Harris, Kyle, Henry, Wayne, Dill, Richard.
2022.
A Network-based IoT Covert Channel. 2022 4th International Conference on Computer Communication and the Internet (ICCCI). :91—99.
Information leaks are a top concern to industry and government leaders. The Internet of Things (IoT) is a rapidly growing technology capable of sensing real-world events. IoT devices lack a common security standard and typically use lightweight security solutions, exposing the sensitive real-world data they gather. Covert channels are a practical method of exfiltrating data from these devices.This research presents a novel IoT covert timing channel (CTC) that encodes data within preexisting network information, namely ports or addresses. This method eliminates the need for inter-packet delays (IPD) to encode data. Seven different encoding methods are implemented between two IoT protocols, TCP/IP and ZigBee. The TCP/IP covert channel is created by mimicking a Ring smart doorbell and implemented using Amazon Web Services (AWS) servers to generate traffic. The ZigBee channel is built by copying a Philips Hue lighting system and executed on an isolated local area network (LAN). Variants of the CTC focus either on Stealth or Bandwidth. Stealth methods mimic legitimate traffic captures to make them difficult to detect while the Bandwidth methods forgo this approach for maximum throughput. Detection results are presented using shape-based and regularity-based detection tests.The Stealth results have a throughput of 4.61 bits per second (bps) for TCP/IP and 3.90 bps for ZigBee. They also evade shape and regularity-based detection tests. The Bandwidth methods average 81.7 Kbps for TCP/IP and 9.76 bps for ZigBee but are evident in detection tests. The results show that CTC using address or port encoding can have superior throughput or detectability compared to IPD-based CTCs.
Hussaini, Adamu, Qian, Cheng, Liao, Weixian, Yu, Wei.
2022.
A Taxonomy of Security and Defense Mechanisms in Digital Twins-based Cyber-Physical Systems. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :597—604.
The (IoT) paradigm’s fundamental goal is to massively connect the “smart things” through standardized interfaces, providing a variety of smart services. Cyber-Physical Systems (CPS) include both physical and cyber components and can apply to various application domains (smart grid, smart transportation, smart manufacturing, etc.). The Digital Twin (DT) is a cyber clone of physical objects (things), which will be an essential component in CPS. This paper designs a systematic taxonomy to explore different attacks on DT-based CPS and how they affect the system from a four-layer architecture perspective. We present an attack space for DT-based CPS on four layers (i.e., object layer, communication layer, DT layer, and application layer), three attack objects (i.e., confidentiality, integrity, and availability), and attack types combined with strength and knowledge. Furthermore, some selected case studies are conducted to examine attacks on representative DT-based CPS (smart grid, smart transportation, and smart manufacturing). Finally, we propose a defense mechanism called Secured DT Development Life Cycle (SDTDLC) and point out the importance of leveraging other enabling techniques (intrusion detection, blockchain, modeling, simulation, and emulation) to secure DT-based CPS.
Acheampong, Edward Mensah, Zhou, Shijie, Liao, Yongjian, Antwi-Boasiako, Emmanuel, Obiri, Isaac Amankona.
2022.
Smart Health Records Sharing Scheme based on Partially Policy-Hidden CP-ABE with Leakage Resilience. 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). :1408—1415.
With the rapid innovation of cloud computing technologies, which has enhanced the application of the Internet of Things (IoT), smart health (s-health) is expected to enhance the quality of the healthcare system. However, s-health records (SHRs) outsourcing, storage, and sharing via a cloud server must be protected and users attribute privacy issues from the public domain. Ciphertext policy attribute-based encryption (CP-ABE) is the cryptographic primitive which is promising to provide fine-grained access control in the cloud environment. However, the direct application of traditional CP-ABE has brought a lot of security issues like attributes' privacy violations and vulnerability in the future by potential powerful attackers like side-channel and cold-bot attacks. To solve these problems, a lot of CP-ABE schemes have been proposed but none of them concurrently support partially policy-hidden and leakage resilience. Hence, we propose a new Smart Health Records Sharing Scheme that will be based on Partially Policy-Hidden CP-ABE with Leakage Resilience which is resilient to bound leakage from each of many secret keys per user, as well as many master keys, and ensure attribute privacy. Our scheme hides attribute values of users in both secret key and ciphertext which contain sensitive information in the cloud environment and are fully secure in the standard model under the static assumptions.
Zhao, Jianming, Miao, Weiwei, Zeng, Zeng.
2022.
A non-interactive verifiable computation model of perceptual layer data based on CP-ABE. 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE). :799—803.
The computing of smart devices at the perception layer of the power Internet of Things is often insufficient, and complex computing can be outsourced to server resources such as the cloud computing, but the allocation process is not safe and controllable. Under special constraints of the power Internet of Things such as multi-users and heterogeneous terminals, we propose a CP-ABE-based non-interactive verifiable computation model of perceptual layer data. This model is based on CP-ABE, NPOT, FHE and other relevant safety and verifiable theories, and designs a new multi-user non-interactive secure verifiable computing scheme to ensure that only users with the decryption key can participate in the execution of NPOT Scheme. In terms of the calculation process design of the model, we gave a detailed description of the system model, security model, plan. Based on the definition given, the correctness and safety of the non-interactive safety verifiable model design in the power Internet of Things environment are proved, and the interaction cost of the model is analyzed. Finally, it proves that the CP-ABE-based non-interactive verifiable computation model for the perceptual layer proposed in this paper has greatly improved security, applicability, and verifiability, and is able to meet the security outsourcing of computing in the power Internet of Things environment.