Biblio
Due to safety concerns and legislation implemented by various governments, the maritime sector adopted Automatic Identification System (AIS). Whilst governments and state agencies have an increasing reliance on AIS data, the underlying technology can be found to be fundamentally insecure. This study identifies and describes a number of potential attack vectors and suggests conceptual countermeasures to mitigate such attacks. With interception by Navy and Coast Guard as well as marine navigation and obstacle avoidance, the vulnerabilities within AIS call into question the multiple deployed overlapping AIS networks, and what the future holds for the protocol.
On account of large and inconsistent propagation delays during transmission in Underwater Wireless Sensor Networks (UWSNs), wormholes bring more destructive than many attacks to localization applications. As a localization algorithm, DV-hop is classic but without secure scheme. A secure localization algorithm for UWSNs- RDV-HOP is brought out, which is based on reputation values and the constraints of propagation distance in UWSNs. In RDV-HOP, the anchor nodes evaluate the reputation of paths to other anchor nodes and broadcast these reputation values to the network. Unknown nodes select credible anchors nodes with high reputation to locate. We analyze the influence of the location accuracy with some parameters in the simulation experiments. The results show that the proposed algorithm can reduce the location error under the wormhole attack.
The globalization of trade is due to the transportation possibilities and the standardization (containerization of freight). The dependency of the economy to the sea and to the merchant navy has increase this last decade. This process forms a worldwide maritime network between the different locations of production and consumption. This network, representing between 80 % and 90% of world traffic is a major economic concern, including freight distribution, raw materials or energy. Rodrigue demonstrates[1] the economic dependency of energy is increasing in the industrialized countries (North America, Europe, East Asia). The inter-regional trade of oil was 31 million bbl/day in 2002 and is expected to grow up to 57 bbl/day in 2030 [2]. Most of the international traffic use a maritime way, where may occur disruptions. For example, the Suez crisis (1956-1957) caused a closure of the canal, reducing the throughput capacity of transportation. This disruption cost a 2 millions of barrels lost per day. This article focuses on vulnerability of the energy supply, and proposes a methodology to formalize and assess the vulnerability of the network by taking into account the spatial structure of maritime territories.