Biblio
Software Defined Networks (SDNs) have gained prominence recently due to their flexible management and superior configuration functionality of the underlying network. SDNs, with OpenFlow as their primary implementation, allow for the use of a centralised controller to drive the decision making for all the supported devices in the network and manage traffic through routing table changes for incoming flows. In conventional networks, machine learning has been shown to detect malicious intrusion, and classify attacks such as DoS, user to root, and probe attacks. In this work, we extend the use of machine learning to improve traffic tolerance for SDNs. To achieve this, we extend the functionality of the controller to include a resilience framework, ReSDN, that incorporates machine learning to be able to distinguish DoS attacks, focussing on a neptune attack for our experiments. Our model is trained using the MIT KDD 1999 dataset. The system is developed as a module on top of the POX controller platform and evaluated using the Mininet simulator.
Security Evaluation and Management (SEM) is considerably important process to protect the Embedded System (ES) from various kinds of security's exploits. In general, SEM's processes have some challenges, which limited its efficiency. Some of these challenges are system-based challenges like the hetero-geneity among system's components and system's size. Some other challenges are expert-based challenges like mis-evaluation possibility and experts non-continuous availability. Many of these challenges were addressed by the Multi Metric (MM) framework, which depends on experts' or subjective evaluation for basic evaluations. Despite of its productivity, subjective evaluation has some drawbacks (e.g. expert misevaluation) foster the need for considering objective evaluations in the MM framework. In addition, the MM framework is system centric framework, thus, by modelling complex and huge system using the MM framework a guide is needed indicating changes toward desirable security's requirements. This paper proposes extensions for the MM framework consider the usage of objective evaluations and work as guide for needed changes to satisfy desirable security requirements.
Legacy work on correcting firewall anomalies operate with the premise of creating totally disjunctive rules. Unfortunately, such solutions are impractical from implementation point of view as they lead to an explosion of the number of firewall rules. In a related previous work, we proposed a new approach for performing assisted corrective actions, which in contrast to the-state-of-the-art family of radically disjunctive approaches, does not lead to a prohibitive increase of the configuration size. In this sense, we allow relaxation in the correction process by clearly distinguishing between constructive anomalies that can be tolerated and destructive anomalies that should be systematically fixed. However, a main disadvantage of the latter approach was its dependency on the guided input from the administrator which controversially introduces a new risk for human errors. In order to circumvent the latter disadvantage, we present in this paper a Firewall Policy Query Engine (FPQE) that renders the whole process of anomaly resolution a fully automated one and which does not require any human intervention. In this sense, instead of prompting the administrator for inserting the proper order corrective actions, FPQE executes those queries against a high level firewall policy. We have implemented the FPQE and the first results of integrating it with our legacy anomaly resolver are promising.
Ransomwares have become a growing threat since 2012, and the situation continues to worsen until now. The lack of security mechanisms and security awareness are pushing the systems into mire of ransomware attacks. In this paper, a new framework called 2entFOX' is proposed in order to detect high survivable ransomwares (HSR). To our knowledge this framework can be considered as one of the first frameworks in ransomware detection because of little publicly-available research in this field. We analyzed Windows ransomwares' behaviour and we tried to find appropriate features which are particular useful in detecting this type of malwares with high detection accuracy and low false positive rate. After hard experimental analysis we extracted 20 effective features which due to two highly efficient ones we could achieve an appropriate set for HSRs detection. After proposing architecture based on Bayesian belief network, the final evaluation is done on some known ransomware samples and unknown ones based on six different scenarios. The result of this evaluations shows the high accuracy of 2entFox in detection of HSRs.
RFID-enabled product supply chain visibility is usually implemented by building up a view of the product history of its activities starting from manufacturing or even earlier with a dynamically updated e-pedigree for track-and-trace, which is examined and authenticated at each node of the supply chain for data consistence with the pre-defined one. However, while effectively reducing the risk of fakes, this visibility can't guarantee that the product is authentic without taking further security measures. To the best of our knowledge, this requires deeper understandings on associations of object events with the counterfeiting activities, which is unfortunately left blank. In this paper, the taxonomy of counterfeiting possibilities is initially developed and analyzed, the structure of EPC-based events is then re-examined, and an object-centric coding mechanism is proposed to construct the object-based event “pedigree” for such event exception detection and inference. On this basis, the system architecture framework to achieve the objectivity of object event visibility for anti-counterfeiting is presented, which is also applicable to other aspects of supply chain management.
We propose a methodology for architecture exploration for Cyber-Physical Systems (CPS) based on an iterative, optimization-based approach, where a discrete architecture selection engine is placed in a loop with a continuous sizing engine. The discrete optimization routine proposes a candidate architecture to the sizing engine. The sizing routine optimizes over the continuous parameters using simulation to evaluate the physical models and to monitor the requirements. To decrease the number of simulations, we show how balance equations and conservation laws can be leveraged to prune the discrete space, thus achieving significant reduction in the overall runtime. We demonstrate the effectiveness of our methodology on an industrial case study, namely an aircraft environmental control system, showing more than one order of magnitude reduction in optimization time.
The dazzling emergence of cyber-threats exert today's cyberspace, which needs practical and efficient capabilities for malware traffic detection. In this paper, we propose an extension to an initial research effort, namely, towards fingerprinting malicious traffic by putting an emphasis on the attribution of maliciousness to malware families. The proposed technique in the previous work establishes a synergy between automatic dynamic analysis of malware and machine learning to fingerprint badness in network traffic. Machine learning algorithms are used with features that exploit only high-level properties of traffic packets (e.g. packet headers). Besides, the detection of malicious packets, we want to enhance fingerprinting capability with the identification of malware families responsible in the generation of malicious packets. The identification of the underlying malware family is derived from a sequence of application protocols, which is used as a signature to the family in question. Furthermore, our results show that our technique achieves promising malware family identification rate with low false positives.
The dazzling emergence of cyber-threats exert today's cyberspace, which needs practical and efficient capabilities for malware traffic detection. In this paper, we propose an extension to an initial research effort, namely, towards fingerprinting malicious traffic by putting an emphasis on the attribution of maliciousness to malware families. The proposed technique in the previous work establishes a synergy between automatic dynamic analysis of malware and machine learning to fingerprint badness in network traffic. Machine learning algorithms are used with features that exploit only high-level properties of traffic packets (e.g. packet headers). Besides, the detection of malicious packets, we want to enhance fingerprinting capability with the identification of malware families responsible in the generation of malicious packets. The identification of the underlying malware family is derived from a sequence of application protocols, which is used as a signature to the family in question. Furthermore, our results show that our technique achieves promising malware family identification rate with low false positives.
This paper presents the design and implementation of an information flow tracking framework based on code rewrite to prevent sensitive information leaks in browsers, combining the ideas of taint and information flow analysis. Our system has two main processes. First, it abstracts the semantic of JavaScript code and converts it to a general form of intermediate representation on the basis of JavaScript abstract syntax tree. Second, the abstract intermediate representation is implemented as a special taint engine to analyze tainted information flow. Our approach can ensure fine-grained isolation for both confidentiality and integrity of information. We have implemented a proof-of-concept prototype, named JSTFlow, and have deployed it as a browser proxy to rewrite web applications at runtime. The experiment results show that JSTFlow can guarantee the security of sensitive data and detect XSS attacks with about 3x performance overhead. Because it does not involve any modifications to the target system, our system is readily deployable in practice.
Preserving the availability and integrity of networked computing systems in the face of fast-spreading intrusions requires advances not only in detection algorithms, but also in automated response techniques. In this paper, we propose a new approach to automated response called the response and recovery engine (RRE). Our engine employs a game-theoretic response strategy against adversaries modeled as opponents in a two-player Stackelberg stochastic game. The RRE applies attack-response trees (ART) to analyze undesired system-level security events within host computers and their countermeasures using Boolean logic to combine lower level attack consequences. In addition, the RRE accounts for uncertainties in intrusion detection alert notifications. The RRE then chooses optimal response actions by solving a partially observable competitive Markov decision process that is automatically derived from attack-response trees. To support network-level multiobjective response selection and consider possibly conflicting network security properties, we employ fuzzy logic theory to calculate the network-level security metric values, i.e., security levels of the system's current and potentially future states in each stage of the game. In particular, inputs to the network-level game-theoretic response selection engine, are first fed into the fuzzy system that is in charge of a nonlinear inference and quantitative ranking of the possible actions using its previously defined fuzzy rule set. Consequently, the optimal network-level response actions are chosen through a game-theoretic optimization process. Experimental results show that the RRE, using Snort's alerts, can protect large networks for which attack-response trees have more than 500 nodes.
The dazzling emergence of cyber-threats exert today's cyberspace, which needs practical and efficient capabilities for malware traffic detection. In this paper, we propose an extension to an initial research effort, namely, towards fingerprinting malicious traffic by putting an emphasis on the attribution of maliciousness to malware families. The proposed technique in the previous work establishes a synergy between automatic dynamic analysis of malware and machine learning to fingerprint badness in network traffic. Machine learning algorithms are used with features that exploit only high-level properties of traffic packets (e.g. packet headers). Besides, the detection of malicious packets, we want to enhance fingerprinting capability with the identification of malware families responsible in the generation of malicious packets. The identification of the underlying malware family is derived from a sequence of application protocols, which is used as a signature to the family in question. Furthermore, our results show that our technique achieves promising malware family identification rate with low false positives.
A small battery driven bio-patch, attached to the human body and monitoring various vital signals such as temperature, humidity, heart activity, muscle and brain activity, is an example of a highly resource constrained system, that has the demanding task to assess correctly the state of the monitored subject (healthy, normal, weak, ill, improving, worsening, etc.), and its own capabilities (attached to subject, working sensors, sufficient energy supply, etc.). These systems and many other systems would benefit from a sense of itself and its environment to improve robustness and sensibility of its behavior. Although we can get inspiration from fields like neuroscience, robotics, AI, and control theory, the tight resource and energy constraints imply that we have to understand accurately what technique leads to a particular feature of awareness, how it contributes to improved behavior, and how it can be implemented cost-efficiently in hardware or software. We review the concepts of environment- and self-models, semantic interpretation, semantic attribution, history, goals and expectations, prediction, and self-inspection, how they contribute to awareness and self-awareness, and how they contribute to improved robustness and sensibility of behavior.
In this paper, we present an open cloud DRM service provider to protect the digital content's copyright. The proposed architecture enables the service providers to use an on-the fly DRM technique with digital signature and symmetric-key encryption. Unlike other similar works, our system does not keep the encrypted digital content but lets the content creators do so in their own cloud storage. Moreover, the key used for symmetric encryption are managed in an extremely secure way by means of the key fission engine and the key fusion engine. The ideas behind the two engines are taken from the works in secure network coding and secret sharing. Although the use of secret sharing and secure network coding for the storage of digital content is proposed in some other works, this paper is the first one employing those ideas only for key management while letting the content be stored in the owner's cloud storage. In addition, we implement an Android SDK for e-Book readers to be compatible with our proposed open cloud DRM service provider. The experimental results demonstrate that our proposal is feasible for the real e-Book market, especially for individual businesses.
The paradigm shift from traditional BPM to Subject-oriented BPM (S-BPM) is accounted to identifying independently acting subjects. As such, they can perform arbitrary actions on arbitrary objects. Abstract State Machines (ASMs) work on a similar basis. Exploring their capabilities with respect to representing and executing S-BPM models strengthens the theoretical foundations of S-BPM, and thus, validity of S-BPM tools. Moreover it enables coherent intertwining of business process modeling with executing of S-BPM representations. In this contribution we introduce the framework and roadmap tackling the exploration of the ASM approach in the context of S-BPM. We also report the major result, namely the implementation of an executable workflow engine with an Abstract State Machine interpreter based on an existing abstract interpreter model for S-BPM (applying the ASM refinement concept). This workflow engine serves as a baseline and reference implementation for further language and processing developments, such as simulation tools, as it has been developed within the Open-S-BPM initiative.
Novel Internet services are emerging around an increasing number of sensors and actuators in our surroundings, commonly referred to as smart devices. Smart devices, which form the backbone of the Internet of Things (IoT), enable alternative forms of user experience by means of automation, convenience, and efficiency. At the same time new security and safety issues arise, given the Internet-connectivity and the interaction possibility of smart devices with human's proximate living space. Hence, security is a fundamental requirement of the IoT design. In order to remain interoperable with the existing infrastructure, we postulate a security framework compatible to standard IP-based security solutions, yet optimized to meet the constraints of the IoT ecosystem. In this ongoing work, we first identify necessary components of an interoperable secure End-to-End communication while incorporating Public-key Cryptography (PKC). To this end, we tackle involved computational and communication overheads. The required components on the hardware side are the affordable hardware acceleration engines for cryptographic operations and on the software side header compression and long-lasting secure sessions. In future work, we focus on integration of these components into a framework and the evaluation of an early prototype of this framework.
Novel Internet services are emerging around an increasing number of sensors and actuators in our surroundings, commonly referred to as smart devices. Smart devices, which form the backbone of the Internet of Things (IoT), enable alternative forms of user experience by means of automation, convenience, and efficiency. At the same time new security and safety issues arise, given the Internet-connectivity and the interaction possibility of smart devices with human's proximate living space. Hence, security is a fundamental requirement of the IoT design. In order to remain interoperable with the existing infrastructure, we postulate a security framework compatible to standard IP-based security solutions, yet optimized to meet the constraints of the IoT ecosystem. In this ongoing work, we first identify necessary components of an interoperable secure End-to-End communication while incorporating Public-key Cryptography (PKC). To this end, we tackle involved computational and communication overheads. The required components on the hardware side are the affordable hardware acceleration engines for cryptographic operations and on the software side header compression and long-lasting secure sessions. In future work, we focus on integration of these components into a framework and the evaluation of an early prototype of this framework.
- « first
- ‹ previous
- 1
- 2
- 3
- 4