Biblio
Filters: Keyword is Generators [Clear All Filters]
Secure Hardware Design: Starting from the Roots of Trust. 2021 IEEE European Test Symposium (ETS). :i—i.
.
2021. Summary form only given, as follows. The complete presentation was not made available for publication as part of the conference proceedings. What is “hardware” security? The network designer relies on the security of the router box. The software developer relies on the TPM (Trusted Platform Module). The circuit designer worries about side-channel attacks. At the same time, electronics shrink: sensor nodes, IOT devices, smart devices are becoming more and more available. Adding security and cryptography to these often very resource constraint devices is a challenge. This presentation will focus on Physically Unclonable Functions and True Random Number Generators, two roots of trust, and their security testing.
A Novel Vertically Oscillating Hydrokinetic Energy Harvester. 2021 IEEE Conference on Technologies for Sustainability (SusTech). :1–8.
.
2021. This paper presents the results of a multifaceted study of the behavior of a novel hydrokinetic energy harvester that utilizes vertical oscillations. Unlike traditional rotating turbines used in hydrokinetic energy, this particular device utilizes the fluid structure interactions of vortex-induced-vibration and gallop. Due to the unique characteristics of this vertical motion, a thorough examination of the proposed system was conducted via a three-pronged approach of simulation, emulation, and field testing. Using a permanent magnet synchronous generator as the electrical power generation source, an electrical power conversion system was simulated, emulated, and tested to achieve appropriate power smoothing for use in microgrid systems present in many Alaskan rural locations.
Electronic neuron-like generator with excitable and self-oscillating behavior. 2021 5th Scientific School Dynamics of Complex Networks and their Applications (DCNA). :1–2.
.
2021. Experimental implementation of phase-locked loop (PLL) with bandpass filter is proposed. Such PLL is noteworthy for neuron-like dynamics. It generates both regular and chaotic spikes and bursts. Previously proposed hardware implementation of this system has significant disadvantage – absence of excitable (non-oscillating) mode that is vital for brain neurons. The proposed electronic neuron-like generator is modified and could be used for hardware implementation of spiking neural networks.
In-database Auditing Subsystem for Security Enhancement. 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO). :1642—1647.
.
2021. Many information systems have been around for several decades, and most of them have their underlying databases. The data accumulated in those databases over the years could be a very valuable asset, which must be protected. The first role of database auditing is to ensure and confirm that security measures are set correctly. However, tracing user behavior and collecting a rich audit trail enables us to use that trail in a more proactive ways. As an example, audit trail could be analyzed ad hoc and used to prevent intrusion, or analyzed afterwards, to detect user behavior patterns, forecast workloads, etc. In this paper, we present a simple, secure, configurable, role-separated, and effective in-database auditing subsystem, which can be used as a base for access control, intrusion detection, fraud detection and other security-related analyses and procedures. It consists of a management relations, code and data object generators and several administrative tools. This auditing subsystem, implemented in several information systems, is capable of keeping the entire audit trail (data history) of a database, as well as all the executed SQL statements, which enables different security applications, from ad hoc intrusion prevention to complex a posteriori security analyses.
Method for Increasing the Accuracy of the Synchronization of Generation Random Sequences Using Control and Correction Stations. 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T). :309—314.
.
2021. This article describes the process of synchronizing the generation of random sequences by a quantum random number generator (QRNG) that can be used as secret keys for known cryptographic transformations. The subject of the research is a method for synchronizing the generation of random QRNG sequences based on L1 (C/A) signals of the global positioning system (GPS) using control correcting information received from control correcting stations.
Random Number Generation Algorithms for Performance Testing. 2021 5th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech). :1—5.
.
2021. There are numerous areas relied on random numbers. As one knows, in Cryptography, randomness plays a vital role from key generation to encrypting the systems. If randomness is not created effectively, the whole system is vulnerable to security threats where an outsider can easily predict the algorithm used to generate the random numbers in the system. Another main application where one would not touch is the role of random numbers in different devices mainly storage-related like Solid State Drives, Universal Serial Bus (USB), Secure Digital (SD) cards random performance testing. This paper focuses on various novel algorithms to generate random numbers for efficient performance evaluation of different drives. The main metrics for performance testing is random read and write performance. Here, the biggest challenge to test the random performance of the drive is not only the extent to which randomness is created but also the testing should cover the entire device (say complete NAND, NOR, etc.). So, the random number generator should generate in such a way that the random numbers should not be able to be predicted and must generate the numbers covering the entire range. This paper proposes different methods for such generators and towards the end, discusses the implementation in Field Programmable Gate Array (FPGA).
A Modified Key Generation Scheme of Vigenère Cipher Algorithm using Pseudo-Random Number and Alphabet Extension. 2021 7th International Conference on Computer and Communications (ICCC). :565—569.
.
2021. In recent years, many modifications have been done to combat the weaknesses of the Vigenère Cipher Algorithm. Several studies have been carried out to rectify the flaw of the algorithm’s repeating key nature by increasing the key length equal to that of the plain text. However, some characters cannot be encrypted due to the limited set of characters in the key. This paper modified the algorithm’s key generation process using a Pseudo-Random Number Generator to improve the algorithm’s security and expanded the table of characters to up to 190 characters. The results show that based on Monobit examination and frequency analysis, the repeating nature of the key is non-existent, and the generated key can be used to encrypt a larger set of characters. The ciphertext has a low IC value of 0.030, which is similar to a random string and polyalphabetic cipher with an IC value of 0.038 but not equal to a monoalphabetic cipher with an IC value of 0.065. Results show that the modified version of the algorithm performs better than some of the recent studies conducted on it
Enhancing Security in the Industrial IoT Sector using Quantum Computing. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). :1—5.
.
2021. The development of edge computing and machine learning technologies have led to the growth of Industrial IoT systems. Autonomous decision making and smart manufacturing are flourishing in the current age of Industry 4.0. By providing more compute power to edge devices and connecting them to the internet, the so-called Cyber Physical Systems are prone to security threats like never before. Security in the current industry is based on cryptographic techniques that use pseudorandom number keys. Keys generated by a pseudo-random number generator pose a security threat as they can be predicted by a malicious third party. In this work, we propose a secure Industrial IoT Architecture that makes use of true random numbers generated by a quantum random number generator (QRNG). CITRIOT's FireConnect IoT node is used to show the proof of concept in a quantum-safe network where the random keys are generated by a cloud based quantum device. We provide an implementation of QRNG on both real quantum computer and quantum simulator. Then, we compare the results with pseudorandom numbers generated by a classical computer.
Eligibility Analysis of Different Chaotic Systems Derived from Logistic Map for Design of Cryptographic Components. 2021 International Conference Engineering Technologies and Computer Science (EnT). :27—31.
.
2021. One of the topics that have successful applications in engineering technologies and computer science is chaos theory. The remarkable area among these successful applications has been especially the subject of chaos-based cryptology. Many practical applications have been proposed in a wide spectrum from image encryption algorithms to random number generators, from block encryption algorithms to hash functions based on chaotic systems. Logistics map is one of the chaotic systems that has been the focus of attention of researchers in these applications. Since, Logistic map can be shown as the most widely used chaotic system in chaos-based cryptology studies due to its simple mathematical structure and its characterization as a strong entropy source. However, in some studies, researchers stated that the behavior displayed in relation to the dynamics of the Logistic map may pose a problem for cryptology applications. For this reason, alternative studies have been carried out using different chaotic systems. In this study, it has been investigated which one is more suitable for cryptographic applications for five different derivatives of the Logistic map. In the study, a substitution box generator program has been implemented using the Logistic map and its five different derivatives. The generated outputs have been tested for five basic substitution box design criteria. Analysis results showed that the proposals for maps derived from Logistic map have a more robust structure than many studies in the literature.
A Random Selection Based Substitution-box Structure Dataset for Cryptology Applications. IEEE EUROCON 2021 - 19th International Conference on Smart Technologies. :321—325.
.
2021. The cryptology science has gradually gained importance with our digitalized lives. Ensuring the security of data transmitted, processed and stored across digital channels is a major challenge. One of the frequently used components in cryptographic algorithms to ensure security is substitution-box structures. Random selection-based substitution-box structures have become increasingly important lately, especially because of their advantages to prevent side channel attacks. However, the low nonlinearity value of these designs is a problem. In this study, a dataset consisting of twenty different substitution-box structures have been publicly presented to the researchers. The fact that the proposed dataset has high nonlinearity values will allow it to be used in many practical applications in the future studies. The proposed dataset provides a contribution to the literature as it can be used both as an input dataset for the new post-processing algorithm and as a countermeasure to prevent the success of side-channel analyzes.
Statistical Analysis of Pseudorandom Sequences and Stegocontainers. 2021 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :434–439.
.
2021. In the theoretical part of the paper, the scope of application of pseudorandom numbers and methods of their generation, as well as methods of statistical testing of pseudorandom sequences (PS) are considered. In the practical part of the work, the quality of PS obtained by Mersenne Twister [1] generator and the cryptographic generator of the RNGCryptoServiceProvider class of the. NET platform is evaluated. Based on the conducted research, the results of testing are obtained, which show that the quality of pseudorandom sequences generated by the cryptographic random number generator is higher than PS generated by Mersenne Twister. Additionally, based on statistical analysis by NIST and TestU01, a study is conducted in an attempt to establish the statistical indistinguishability of sets of empty- and stegocontainers created using a two-dimensional associative masking mechanism [2-4] based on a gamma of at least 500 KB in length. Research work was carried out under the guidance of R.F. Gibadullin, Associate Professor of the Department of Computer Systems of Kazan National Research Technical University named after A.N.Tupolev-KAI.
Design and Simulation of AES S-Box Towards Data Security in Video Surveillance Using IP Core Generator. 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :469–476.
.
2021. Broadcasting applications such as video surveillance systems are using High Definition (HD) videos. The use of high-resolution videos increases significantly the data volume of video coding standards such as High-Efficiency Video Coding (HEVC) and Advanced Video Coding (AVC), which increases the challenge for storing, processing, encrypting, and transmitting these data over different communication channels. Video compression standards use state-of-the-art techniques to compress raw video sequences more efficiently, such techniques require high computational complexity and memory utilization. With the emergent of using HEVC and video surveillance systems, many security risks arise such as man-in-the-middle attacks, and unauthorized disclosure. Such risks can be mitigated by encrypting the traffic of HEVC. The most widely used encryption algorithm is the Advanced Encryption Standard (AES). Most of the computational complexity in AES hardware-implemented is due to S-box or sub-byte operation and that because it needs many resources and it is a non-linear structure. The proposed AES S-box ROM design considers the latest HEVC used for homeland security video surveillance systems. This paper presents different designs for VHDL efficient ROM implementation of AES S-box using IP core generator, ROM components, and using Functions, which are all supported by Xilinx. IP core generator has Block Memory Generator (BMG) component in its library. S-box IP core ROM is implemented using Single port block memory. The S-box lookup table has been used to fill the ROM using the .coe file format provided during the initialization of the IP core ROM. The width is set to 8-bit to address the 256 values while the depth is set to 8-bit which represents the data filed in the ROM. The whole design is synthesized using Xilinx ISE Design Suite 14.7 software, while Modelism (version10.4a) is used for the simulation process. The proposed IP core ROM design has shown better memory utilization compared to non-IP core ROM design, which is more suitable for memory-intensive applications. The proposed design is suitable for implementation using the FPGA ROM design. Hardware complexity, frequency, memory utilization, and delay are presented in this paper.
An Open Source Power System Simulator in Python for Efficient Prototyping of WAMPAC Applications. 2021 IEEE Madrid PowerTech. :1–6.
.
2021. An open source software package for performing dynamic RMS simulation of small to medium-sized power systems is presented, written entirely in the Python programming language. The main objective is to facilitate fast prototyping of new wide area monitoring, control and protection applications for the future power system by enabling seamless integration with other tools available for Python in the open source community, e.g. for signal processing, artificial intelligence, communication protocols etc. The focus is thus transparency and expandability rather than computational efficiency and performance.The main purpose of this paper, besides presenting the code and some results, is to share interesting experiences with the power system community, and thus stimulate wider use and further development. Two interesting conclusions at the current stage of development are as follows:First, the simulation code is fast enough to emulate real-time simulation for small and medium-size grids with a time step of 5 ms, and allows for interactive feedback from the user during the simulation. Second, the simulation code can be uploaded to an online Python interpreter, edited, run and shared with anyone with a compatible internet browser. Based on this, we believe that the presented simulation code could be a valuable tool, both for researchers in early stages of prototyping real-time applications, and in the educational setting, for students developing intuition for concepts and phenomena through real-time interaction with a running power system model.
Automatic Test Case Generation for Prime Field Elliptic Curve Cryptographic Circuits. 2021 IEEE 17th International Colloquium on Signal Processing Its Applications (CSPA). :121—126.
.
2021. Elliptic curve is a major area of research due to its application in elliptic curve cryptography. Due to their small key sizes, they offer the twofold advantage of reduced storage and transmission requirements. This also results in faster execution times. The authors propose an architecture to automatically generate test cases, for verification of elliptic curve operational circuits, based on user-defined prime field and the parameters used in the circuit to be tested. The ECC test case generations are based on the Galois field arithmetic operations which were the subject of previous work by the authors. One of the strengths of elliptic curve mathematics is its simplicity, which involves just three points (P, Q, and R), which pass through a line on the curve. The test cases generate points for a user-defined prime field which sequentially selects the input vector points (P and/or Q), to calculate the resultant output vector (R) easily. The testbench proposed here targets field programmable gate array (FPGAs) platforms and experimental results for ECC test case generation on different prime fields are presented, while ModelSim is used to validate the correctness of the ECC operations.
Discrete-nonlinear Colpitts oscillator based communication security increasing of the OFDM systems. 2021 International Conference on Electrotechnical Complexes and Systems (ICOECS). :253—256.
.
2021. This article reports results about the development of the algorithm that allows to increase the information security of OFDM communication system based on the discrete-nonlinear Colpitts system with dynamic chaos. Proposed system works on two layers: information and transport. In the first one, Arnold Transform was applied. The second one, transport level security was provided by QAM constellation mixing. Correlation coefficients, Shannon's entropy and peak-to-average power ratio (PAPR) were estimated.
Video anomaly detection method based on future frame prediction and attention mechanism. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0405–0407.
.
2021. With the development of deep learning technology, a large number of new technologies for video anomaly detection have emerged. This paper proposes a video anomaly detection algorithm based on the future frame prediction using Generative Adversarial Network (GAN) and attention mechanism. For the generation model, a U-Net model, is modified and added with an attention module. For the discrimination model, a Markov GAN discrimination model with self-attention mechanism is proposed, which can affect the generator and improve the generation quality of the future video frame. Experiments show that the new video anomaly detection algorithm improves the detection performance, and the attention module plays an important role in the overall detection performance. It is found that the more the attention modules are appliedthe deeper the application level is, the better the detection effect is, which also verifies the rationality of the model structure used in this project.
CP-TRAM: Cyber-Physical Transmission Resiliency Assessment Metric. IEEE Transactions on Smart Grid. 11:5114—5123.
.
2020. Natural disasters and cyber intrusions threaten the normal operation of the critical electric grid infrastructure. There is still no widely accepted methodology to quantify the resilience in power systems. In this work, power system resiliency refers to the ability of the system to keep provide energy to the critical load even with adverse events. A significant amount of work has been done to quantify the resilience for distribution systems. Even though critical loads are located in distribution system, transmission system play a critical role in supplying energy to distribution feeder in addition to the Distributed Energy Resources (DERs). This work focuses on developing a framework to quantify the resiliency of cyber-physical transmission systems. Quantifying the resiliency of the transmission network, is important to determine and devise suitable control mechanisms to minimize the effects of undesirable events in the power grid. The proposed metric is based on both system infrastructure and with changing operating conditions. A graphical analysis along with measure of critical parameters of the network is performed to quantify the redundancy and vulnerabilities in the physical network of the system. A similar approach is used to quantify the cyber-resiliency. The results indicate the capability of the proposed framework to quantify cyber-physical resilience of the transmission systems.
Conference Name: IEEE Transactions on Smart Grid
Automatic Data Model Mapper for Security Policy Translation in Interface to Network Security Functions Framework. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :882–887.
.
2021. The Interface to Network Security Functions (I2NSF) Working Group in Internet Engineering Task Force (IETF) provides data models of interfaces to easily configure Network Security Functions (NSF). The Working Group presents a high-level data model and a low-level data model for configuring the NSFs. The high-level data model is used for the users to manipulate the NSFs configuration easily without any security expertise. But the NSFs cannot be configured using the high-level data model as it needs a low-level data model to properly deploy their security operation. For that reason, the I2NSF Framework needs a security policy translator to translate the high-level data model into the corresponding low-level data model. This paper improves the previously proposed Security Policy Translator by adding an Automatic Data Model Mapper. The proposed mapper focuses on the mapping between the elements in the high-level data model and the elements in low-level data model to automate the translation without the need for a security administrator to create a mapping table.
Deep learning-based anomalous object detection system for panoramic cameras managed by a Jetson TX2 board. 2021 International Joint Conference on Neural Networks (IJCNN). :1–7.
.
2021. Social conflicts appearing in the media are increasing public awareness about security issues, resulting in a higher demand of more exhaustive environment monitoring methods. Automatic video surveillance systems are a powerful assistance to public and private security agents. Since the arrival of deep learning, object detection and classification systems have experienced a large improvement in both accuracy and versatility. However, deep learning-based object detection and classification systems often require expensive GPU-based hardware to work properly. This paper presents a novel deep learning-based foreground anomalous object detection system for video streams supplied by panoramic cameras, specially designed to build power efficient video surveillance systems. The system optimises the process of searching for anomalous objects through a new potential detection generator managed by three different multivariant homoscedastic distributions. Experimental results obtained after its deployment in a Jetson TX2 board attest the good performance of the system, postulating it as a solvent approach to power saving video surveillance systems.
Generating Image Captions using Deep Learning and Natural Language Processing. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1—4.
.
2021. In today's world, there is rapid progress in the field of artificial intelligence and image captioning. It becomes a fascinating task that has saw widespread interest. The task of image captioning comprises image description engendered based on the hybrid combination of deep learning, natural language processing, and various approaches of machine learning and computer vision. In this work authors emphasize on how the model generates a short description as an output of the input image using the functionalities of Deep Learning and Natural Language Processing, for helping visually impaired people, and can also be cast-off in various web sites to automate the generation of captions reducing the task of recitation with great ease.
Keys as Secret Messages: Provably Secure and Efficiency-balanced Steganography on Blockchain. 2021 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :1269–1278.
.
2021. To improve efficiency of stegosystem on blockchain and balance the time consumption of Encode and Decode operations, we propose a new blockchain-based steganography scheme, called Keys as Secret Messages (KASM), where a codebook of mappings between bitstrings and public keys can be pre-calculated by both sides with some secret parameters pre-negotiated before covert communication. By applying properties of elliptic curves and pseudorandom number generators, we realize key derivation of codebook item, and we construct the stegosystem with provable security under chosen hiddentext attack. By comparing KASM with Blockchain Covert Channel (BLOCCE) and testing on Bitcoin protocol, we conclude that our proposed stegosystem encodes hiddentexts faster than BLOCCE does and can decode stegotexts in highly acceptable time. The balanced time consumption of Encode and Decode operations of KASM make it applicable in the scene of duplex communication. At the same time, KASM does not leak sender’s private keys, so sender’s digital currencies can be protected.
Practical and Efficient In-Enclave Verification of Privacy Compliance. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :413–425.
.
2021. A trusted execution environment (TEE) such as Intel Software Guard Extension (SGX) runs attestation to prove to a data owner the integrity of the initial state of an enclave, including the program to operate on her data. For this purpose, the data-processing program is supposed to be open to the owner or a trusted third party, so its functionality can be evaluated before trust being established. In the real world, however, increasingly there are application scenarios in which the program itself needs to be protected (e.g., proprietary algorithm). So its compliance with privacy policies as expected by the data owner should be verified without exposing its code.To this end, this paper presents DEFLECTION, a new model for TEE-based delegated and flexible in-enclave code verification. Given that the conventional solutions do not work well under the resource-limited and TCB-frugal TEE, we come up with a new design inspired by Proof-Carrying Code. Our design strategically moves most of the workload to the code generator, which is responsible for producing easy-to-check code, while keeping the consumer simple. Also, the whole consumer can be made public and verified through a conventional attestation. We implemented this model on Intel SGX and demonstrate that it introduces a very small part of TCB. We also thoroughly evaluated its performance on micro-and macro-benchmarks and real-world applications, showing that the design only incurs a small overhead when enforcing several categories of security policies.
Machine-Learning-based Advanced Dynamic Security Assessment: Prediction of Loss of Synchronism in Generators. 2020 52nd North American Power Symposium (NAPS). :1–6.
.
2021. This paper proposes a machine-learning-based advanced online dynamic security assessment (DSA) method, which provides a detailed evaluation of the system stability after a disturbance by predicting impending loss of synchronism (LOS) of generators. Voltage angles at generator buses are used as the features of the different random forest (RF) classifiers which are trained to consecutively predict LOS of the generators as a contingency proceeds and updated measurements become available. A wide range of contingencies for various topologies and operating conditions of the IEEE 118-bus system has been studied in offline analysis using the GE positive sequence load flow analysis (PSLF) software to create a comprehensive dataset for training and testing the RF models. The performances of the trained models are evaluated in the presence of measurement errors using various metrics. The results reveal that the trained models are accurate, fast, and robust to measurement errors.
Communication System Based on Chaotic Time-Delayed Feedback Generator. 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR). :192–194.
.
2020. We study communication systems based on chaotic time-delayed feedback generator. The aim of the study is a comparative assessment of the noise immunity for the four different communication systems at the same levels of the external noise. It is shown that the principle of correlation receiver, which is used in classical communication systems, can be also used in the case where chaotic signals generated by self-oscillating systems with complex behavior are used as reference signals. Systems based on the correlation receiver principles have very high immunity to the external noise.
Incremental code updates exploitation as a basis for return oriented programming attacks on resource-constrained devices. 2021 5th Cyber Security in Networking Conference (CSNet). :55—62.
.
2021. Code-reuse attacks pose a threat to embedded devices since they are able to defeat common security defenses such as non-executable stacks. To succeed in his code-reuse attack, the attacker has to gain knowledge of some or all of the instructions of the target firmware/software. In case of a bare-metal firmware that is protected from being dumped out of a device, it is hard to know the running instructions of the target firmware. This consequently makes code-reuse attacks more difficult to achieve. This paper shows how an attacker can gain knowledge of some of these instructions by sniffing the unencrypted incremental updates. These updates exist to reduce the radio reception power for resource-constrained devices. Based on the literature, these updates are checked against authentication and integrity, but they are sometimes sent unencrypted. Therefore, it will be demonstrated how a Return-Oriented Programming (ROP) attack can be accomplished using only the passively sniffed incremental updates. The generated updates of the R3diff and Delta Generator (DG) differencing algorithms will be under assessment. The evaluation reveals that both of them can be exploited by the attacker. It also shows that the DG generated updates leak more information than the R3diff generated updates. To defend against this attack, different countermeasures that consider different power consumption scenarios are proposed, but yet to be evaluated.