Biblio
The security problem of networked control systems (NCSs) suffering denial of service(DoS) attacks with incomplete information is investigated in this paper. Data transmission among different components in NCSs may be blocked due to DoS attacks. We use the concept of security level to describe the degree of security of different components in an NCS. Intrusion detection system (IDS) is used to monitor the invalid data generated by DoS attacks. At each time slot, the defender considers which component to monitor while the attacker considers which place for invasion. A one-shot game between attacker and defender is built and both the complete information case and the incomplete information case are considered. Furthermore, a repeated game model with updating beliefs is also established based on the Bayes' rule. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.
Vehicular Adhoc Network (VANET), a specialized form of MANET in which safety is the major concern as critical information related to driver's safety and assistance need to be disseminated between the vehicle nodes. The security of the nodes can be increased, if the network availability is increased. The availability of the network is decreased, if there is Denial of Service Attacks (DoS) in the network. In this paper, a packet detection algorithm for the prevention of DoS attacks is proposed. This algorithm will be able to detect the multiple malicious nodes in the network which are sending irrelevant packets to jam the network and that will eventually stop the network to send the safety messages. The proposed algorithm was simulated in NS-2 and the quantitative values of packet delivery ratio, packet loss ratio, network throughput proves that the proposed algorithm enhance the security of the network by detecting the DoS attack well in time.
The Internet of things networks is vulnerable to many DOS attacks. Among them, Blackhole attack is one of the severe attacks as it hampers communication among network devices. In general, the solutions presented in the literature for Blackhole detection are not efficient. In addition, the existing approaches do not factor-in, the consumption in resources viz. energy, bandwidth and network lifetime. Further, these approaches are also insensitive to the mechanism used for selecting a parent in on Blackhole formation. Needless to say, a blackhole node if selected as parent would lead to orchestration of this attack trivially and hence it is an important factor in selection of a parent. In this paper, we propose SIEWE (Strainer based Intrusion Detection of Blackhole in 6LoWPAN for the Internet of Things) - an Intrusion detection mechanism to identify Blackhole attack on Routing protocol RPL in IoT. In contrast to the Watchdog based approaches where every node in network runs in promiscuous mode, SIEWE filters out suspicious nodes first and then verifies the behavior of those nodes only. The results that we obtain, show that SIEWE improves the Packet Delivery Ratio (PDR) of the system by blacklisting malicious Blackhole nodes.
NDN has been widely regarded as a promising representation and implementation of information- centric networking (ICN) and serves as a potential candidate for the future Internet architecture. However, the security of NDN is threatened by a significant safety hazard known as an IFA, which is an evolution of DoS and distributed DoS attacks on IP-based networks. The IFA attackers can create numerous malicious interest packets into a named data network to quickly exhaust the bandwidth of communication channels and cache capacity of NDN routers, thereby seriously affecting the routers' ability to receive and forward packets for normal users. Accurate detection of the IFAs is the most critical issue in the design of a countermeasure. To the best of our knowledge, the existing IFA countermeasures still have limitations in terms of detection accuracy, especially for rapidly volatile attacks. This article proposes a TC to detect the distributions of normal and malicious interest packets in the NDN routers to further identify the IFA. The trace back method is used to prevent further attempts. The simulation results show the efficiency of the TC for mitigating the IFAs and its advantages over other typical IFA countermeasures.
Software Defined Networking (SDN) is a major paradigm in controlling and managing number of heterogeneous networks. It's a real challenge however to secure such complex networks which are heterogeneous in network security. The centralization of the intelligence in network presents both an opportunity as well as security threats. This paper focuses on various potential security challenges at the various levels of SDN architecture such as Denial of service (DoS) attack and its countermeasures. The paper shows the detection of DoS attck with S-FlowRT.
Widespread use of Wireless Sensor Networks (WSNs) introduced many security threats due to the nature of such networks, particularly limited hardware resources and infrastructure less nature. Denial of Service attack is one of the most common types of attacks that face such type of networks. Building an Intrusion Detection and Prevention System to mitigate the effect of Denial of Service attack is not an easy task. This paper proposes the use of two machine learning techniques, namely decision trees and Support Vector Machines, to detect attack signature on a specialized dataset. The used dataset contains regular profiles and several Denial of Service attack scenarios in WSNs. The experimental results show that decision trees technique achieved better (higher) true positive rate and better (lower) false positive rate than Support Vector Machines, 99.86% vs 99.62%, and 0.05% vs. 0.09%, respectively.
Distributed Denial of Service (DDoS) strike is a malevolent undertaking to irritate regular action of a concentrated on server, organization or framework by overwhelming the goal or its incorporating establishment with a flood of Internet development. DDoS ambushes achieve feasibility by utilizing different exchanged off PC structures as wellsprings of strike action. Mishandled machines can join PCs and other masterminded resources, for instance, IoT contraptions. From an anomalous express, a DDoS attack looks like a vehicle convergence ceasing up with the road, shielding standard action from meeting up at its pined for objective.
Mobile Ad hoc Network has a wide range of applications in military and civilian domains. It is generally assumed that the nodes are trustworthy and cooperative in routing protocols of MANETs viz. AODV, DSR etc. This assumption makes wireless ad hoc network more prone to interception and manipulation which further open possibilities of various types of Denial of Service (DoS) attacks. In order to mitigate the effect of malicious nodes, a reputation based secure routing protocol is proposed in this paper. The basic idea of the proposed scheme is organize the network with 25 nodes which are deployed in a 5×5 grid structure. Each normal node in the network has a specific prime number, which acts as Node identity. A Backbone Network (BBN) is deployed in a 5×5 grid structure. The proposed scheme uses legitimacy value table and reputation level table maintained by backbone network in the network. These tables are used to provide best path selection after avoiding malicious nodes during path discovery. Based on the values collected in their legitimacy table & reputation level table backbone nodes separate and avoid the malicious nodes while making path between source and destination.
Security is the most important issue which needs to be given utmost importance and as both `Mobile Ad hoc Networks (MANET) and Wireless Sensor Networks (WSN) have similar system models, their security issues are also similar. This study deals in analysing the various lapses in security and the characteristics of various routing protocol's functionality and structure. This paper presents the implementation of ECC algorithm in the prevention of Denial of Service (DoS) attack through fictitious node. Optimized Link State Routing (OLSR) protocol is a MANET routing protocol and is evaluated mainly for two things. Primarily OLSR is less secure like AODV and others. The reason for it being less secure is that it is a table-driven in nature and uses a methodology called selective flooding technique, where redundancy is reduced and thus the security possibilities of the protocol is reduced. Another reason for selecting OLSR is that is an highly effective routing protocol for MANET. A brief information about formal routing is provided by the proposed methodology termed Denial Contradictions with Fictitious Node Mechanism (DCFM) which provides brief information about formal routing. Here, fictitious node acts as a virtual node and large networks are managed from attacks. More than 95% of attacks are prevented by this proposed methodology and the solution is applicable all the other DoS attacks of MANET.
This paper aims to address the security challenges on physical unclonable functions (PUFs) raised by modeling attacks and denial of service (DoS) attacks. We develop a hardware isolation-based secure architecture extension, namely PUFSec, to protect the target PUF from security compromises without modifying the internal PUF design. PUFSec achieves the security protection by physically isolating the PUF hardware and data from the attack surfaces accessible by the adversaries. Furthermore, we deploy strictly enforced security policies within PUFSec, which authenticate the incoming PUF challenges and prevent attackers from collecting sufficient PUF responses to issue modeling attacks or interfering with the PUF workflow to launch DoS attacks. We implement our PUFSec framework on a Xilinx SoC equipped with ARM processor. Our experimental results on the real hardware prove the enhanced security and the low performance and power overhead brought by PUFSec.
Recent years, the issue of cyber security has become ever more prevalent in the analysis and design of electrical cyber-physical systems (ECPSs). In this paper, we present the TrueTime Network Library for modeling the framework of ECPSs and focuses on the vulnerability analysis of ECPSs under DoS attacks. Model predictive control algorithm is used to control the ECPS under disturbance or attacks. The performance of decentralized and distributed control strategies are compared on the simulation platform. It has been proved that DoS attacks happen at dada collecting sensors or control instructions actuators will influence the system differently.