Visible to the public Biblio

Filters: Keyword is Presses  [Clear All Filters]
2023-06-30
Lonergan, Erica D., Montgomery, Mark.  2022.  The Promise and Perils of Allied Offensive Cyber Operations. 2022 14th International Conference on Cyber Conflict: Keep Moving! (CyCon). 700:79–92.
NATO strategy and policy has increasingly focused on incorporating cyber operations to support deterrence, warfighting, and intelligence objectives. However, offensive cyber operations in particular have presented a delicate challenge for the alliance. As cyber threats to NATO members continue to grow, the alliance has begun to address how it could incorporate offensive cyber operations into its strategy and policy. However, there are significant hurdles to meaningful cooperation on offensive cyber operations, in contrast with the high levels of integration in other operational domains. Moreover, there is a critical gap in existing conceptualizations of the role of offensive cyber operations in NATO policy. Specifically, NATO cyber policy has focused on cyber operations in a warfighting context at the expense of considering cyber operations below the level of conflict. In this article, we explore the potential role for offensive cyber operations not only in wartime but also below the threshold of armed conflict. In doing so, we systematically explore a number of challenges at the political/strategic as well as the operational/tactical levels and provide policy recommendations for next steps for the alliance.
ISSN: 2325-5374
2023-06-29
Rahman, Md. Shahriar, Ashraf, Faisal Bin, Kabir, Md. Rayhan.  2022.  An Efficient Deep Learning Technique for Bangla Fake News Detection. 2022 25th International Conference on Computer and Information Technology (ICCIT). :206–211.

People connect with a plethora of information from many online portals due to the availability and ease of access to the internet and electronic communication devices. However, news portals sometimes abuse press freedom by manipulating facts. Most of the time, people are unable to discriminate between true and false news. It is difficult to avoid the detrimental impact of Bangla fake news from spreading quickly through online channels and influencing people’s judgment. In this work, we investigated many real and false news pieces in Bangla to discover a common pattern for determining if an article is disseminating incorrect information or not. We developed a deep learning model that was trained and validated on our selected dataset. For learning, the dataset contains 48,678 legitimate news and 1,299 fraudulent news. To deal with the imbalanced data, we used random undersampling and then ensemble to achieve the combined output. In terms of Bangla text processing, our proposed model achieved an accuracy of 98.29% and a recall of 99%.

2020-12-01
Ogawa, R., Park, S., Umemuro, H..  2019.  How Humans Develop Trust in Communication Robots: A Phased Model Based on Interpersonal Trust. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :606—607.

The purpose of this study was to propose a model of development of trust in social robots. Insights in interpersonal trust were adopted from social psychology and a novel model was proposed. In addition, this study aimed to investigate the relationship among trust development and self-esteem. To validate the proposed model, an experiment using a communication robot NAO was conducted and changes in categories of trust as well as self-esteem were measured. Results showed that general and category trust have been developed in the early phase. Self-esteem is also increased along the interactions with the robot.

2020-01-28
Monaco, John V..  2019.  Feasibility of a Keystroke Timing Attack on Search Engines with Autocomplete. 2019 IEEE Security and Privacy Workshops (SPW). :212–217.
Many websites induce the browser to send network traffic in response to user input events. This includes websites with autocomplete, a popular feature on search engines that anticipates the user's query while they are typing. Websites with this functionality require HTTP requests to be made as the query input field changes, such as when the user presses a key. The browser responds to input events by generating network traffic to retrieve the search predictions. The traffic emitted by the client can expose the timings of keyboard input events which may lead to a keylogging side channel attack whereby the query is revealed through packet inter-arrival times. We investigate the feasibility of such an attack on several popular search engines by characterizing the behavior of each website and measuring information leakage at the network level. Three out of the five search engines we measure preserve the mutual information between keystrokes and timings to within 1% of what it is on the host. We describe the ways in which two search engines mitigate this vulnerability with minimal effects on usability.
Krishna, Gutha Jaya, Ravi, Vadlamani.  2019.  Keystroke Based User Authentication Using Modified Differential Evolution. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :739–744.

User Authentication is a difficult problem yet to be addressed accurately. Little or no work is reported in literature dealing with clustering-based anomaly detection techniques for user authentication for keystroke data. Therefore, in this paper, Modified Differential Evolution (MDE) based subspace anomaly detection technique is proposed for user authentication in the context of behavioral biometrics using keystroke dynamics features. Thus, user authentication is posed as an anomaly detection problem. Anomalies in CMU's keystroke dynamics dataset are identified using subspace-based and distance-based techniques. It is observed that, among the proposed techniques, MDE based subspace anomaly detection technique yielded the highest Area Under ROC Curve (AUC) for user authentication problem. We also performed a Wilcoxon Signed Rank statistical test to corroborate our results statistically.

Handa, Jigyasa, Singh, Saurabh, Saraswat, Shipra.  2019.  A Comparative Study of Mouse and Keystroke Based Authentication. 2019 9th International Conference on Cloud Computing, Data Science Engineering (Confluence). :670–674.

One of the basic behavioural biometric methods is keystroke element. Being less expensive and not requiring any extra bit of equipment is the main advantage of keystroke element. The primary concentration of this paper is to give an inevitable review of behavioural biometrics strategies, measurements and different methodologies and difficulties and future bearings specially of keystroke analysis and mouse dynamics. Keystrokes elements frameworks utilize insights, e.g. time between keystrokes, word decisions, word mixes, general speed of writing and so on. Mouse Dynamics is termed as the course of actions captured from the moving mouse by an individual when interacting with a GUI. These are representative factors which may be called mouse dynamics signature of an individual, and may be used for verification of identity of an individual. In this paper, we compare the authentication system based on keystroke dynamics and mouse dynamics.

2019-12-18
Brantly, Aaron F..  2018.  The cyber deterrence problem. 2018 10th International Conference on Cyber Conflict (CyCon). :31–54.
What is the role of deterrence in an age where adept hackers can credibly hold strategic assets at risk? Do conventional frameworks of deterrence maintain their applicability and meaning against state actors in cyberspace? Is it possible to demonstrate credibility with either in-domain or cross-domain signaling or is cyberspace fundamentally ill-suited to the application of deterrence frameworks? Building on concepts from both rational deterrence theory and cognitive theories of deterrence this work attempts to leverage relevant examples from both within and beyond cyberspace to examine applicability of deterrence in the digital age and for digital tools in an effort to shift the conversation from Atoms to Bits and Bytes.
2018-02-27
[Anonymous].  2017.  Sensitivity Analysis in Keystroke Dynamics Using Convolutional Neural Networks. 2017 IEEE Workshop on Information Forensics and Security (WIFS). :1–6.

Biometrics has become ubiquitous and spurred common use in many authentication mechanisms. Keystroke dynamics is a form of behavioral biometrics that can be used for user authentication while actively working at a terminal. The proposed mechanisms involve digraph, trigraph and n-graph analysis as separate solutions or suggest a fusion mechanism with certain limitations. However, deep learning can be used as a unifying machine learning technique that consolidates the power of all different features since it has shown tremendous results in image recognition and natural language processing. In this paper, we investigate the applicability of deep learning on three different datasets by using convolutional neural networks and Gaussian data augmentation technique. We achieve 10% higher accuracy and 7.3% lower equal error rate (EER) than existing methods. Also, our sensitivity analysis indicates that the convolution operation and the fully-connected layer are the most prominent factors that affect the accuracy and the convergence rate of a network trained with keystroke data.

2017-03-08
Roth, J., Liu, X., Ross, A., Metaxas, D..  2015.  Investigating the Discriminative Power of Keystroke Sound. IEEE Transactions on Information Forensics and Security. 10:333–345.
The goal of this paper is to determine whether keystroke sound can be used to recognize a user. In this regard, we analyze the discriminative power of keystroke sound in the context of a continuous user authentication application. Motivated by the concept of digraphs used in modeling keystroke dynamics, a virtual alphabet is first learned from keystroke sound segments. Next, the digraph latency within the pairs of virtual letters, along with other statistical features, is used to generate match scores. The resultant scores are indicative of the similarities between two sound streams, and are fused to make a final authentication decision. Experiments on both static text-based and free text-based authentications on a database of 50 subjects demonstrate the potential as well as the limitations of keystroke sound.
Mondal, S., Bours, P..  2015.  Continuous Authentication in a real world settings. 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR). :1–6.

Continuous Authentication by analysing the user's behaviour profile on the computer input devices is challenging due to limited information, variability of data and the sparse nature of the information. As a result, most of the previous research was done as a periodic authentication, where the analysis was made based on a fixed number of actions or fixed time period. Also, the experimental data was obtained for most of the previous research in a very controlled condition, where the task and environment were fixed. In this paper, we will focus on actual continuous authentication that reacts on every single action performed by the user. The experimental data was collected in a complete uncontrolled condition from 52 users by using our data collection software. In our analysis, we have considered both keystroke and mouse usages behaviour pattern to avoid a situation where an attacker avoids detection by restricting to one input device because the continuous authentication system only checks the other input device. The result we have obtained from this research is satisfactory enough for further investigation on this domain.

Mondal, S., Bours, P..  2015.  Context independent continuous authentication using behavioural biometrics. IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015). :1–8.

In this research, we focus on context independent continuous authentication that reacts on every separate action performed by a user. The experimental data was collected in a complete uncontrolled condition from 53 users by using our data collection software. In our analysis, we considered both keystroke and mouse usage behaviour patterns to prevent a situation where an attacker avoids detection by restricting to one input device because the continuous authentication system only checks the other input device. The best result obtained from this research is that for 47 bio-metric subjects we have on average 275 actions required to detect an imposter where these biometric subjects are never locked out from the system.