Biblio
Reconfigurable Scan Networks (RSNs) are a powerful tool for testing and maintenance of embedded systems, since they allow for flexible access to on-chip instrumentation such as built-in self-test and debug modules. RSNs, however, can be also exploited by malicious users as a side-channel in order to gain information about sensitive data or intellectual property and to recover secret keys. Hence, implementing appropriate counter-measures to secure the access to and data integrity of embedded instrumentation is of high importance. In this paper we present a novel hardware and software combined approach to ensure data privacy in IEEE Std 1687 (IJTAG) RSNs. To do so, both a secure IJTAG compliant plug-and-play instrument wrapper and a versatile software toolchain are introduced. The wrapper demonstrates the necessary architectural adaptations required when using a lightweight stream cipher, whereas the software toolchain provides a seamless integration of the testing workflow with stream cipher. The applicability of the method is demonstrated by an FPGA-based implementation. We report on the performance of the developed instrument wrapper, which is empirically shown to have only a small impact on the workflow in terms of hardware overhead, operational costs and test time overhead.
Nowadays, many applications involve big data and big data analysis methods appear in many fields. As a preliminary attempt to solve the challenge of big data analysis, this paper presents a distributed online learning algorithm based on differential privacy. Since online learning can effectively process sensitive data, we introduce the concept of differential privacy in distributed online learning algorithms, with the aim at ensuring data privacy during online learning to prevent adversarial nodes from inferring any important data information. In particular, for different adversary models, we consider different type graphs to tolerate a limited number of adversaries near each regular node or tolerate a global limited number of adversaries.
Some IoT data are time-sensitive and cannot be processed in clouds, which are too far away from IoT devices. Fog computing, located as close as possible to data sources at the edge of IoT systems, deals with this problem. Some IoT data are sensitive and require privacy controls. The proposed Policy Enforcement Fog Module (PEFM), running within a single fog, operates close to data sources connected to their fog, and enforces privacy policies for all sensitive IoT data generated by these data sources. PEFM distinguishes two kinds of fog data processing. First, fog nodes process data for local IoT applications, running within the local fog. All real-time data processing must be local to satisfy real-time constraints. Second, fog nodes disseminate data to nodes beyond the local fog (including remote fogs and clouds) for remote (and non-real-time) IoT applications. PEFM has two components for these two kinds of fog data processing. First, Local Policy Enforcement Module (LPEM), performs direct privacy policy enforcement for sensitive data accessed by local IoT applications. Second, Remote Policy Enforcement Module (RPEM), sets up a mechanism for indirectly enforcing privacy policies for sensitive data sent to remote IoT applications. RPEM is based on creating and disseminating Active Data Bundles-software constructs bundling inseparably sensitive data, their privacy policies, and an execution engine able to enforce privacy policies. To prove effectiveness and efficiency of the solution, we developed a proof-of-concept scenario for a smart home IoT application. We investigate privacy threats for sensitive IoT data and show a framework for using PEFM to overcome these threats.
It is a well-known fact that nowadays access to sensitive information is being performed through the use of a three-tier-architecture. Web applications have become a handy interface between users and data. As database-driven web applications are being used more and more every day, web applications are being seen as a good target for attackers with the aim of accessing sensitive data. If an organization fails to deploy effective data protection systems, they might be open to various attacks. Governmental organizations, in particular, should think beyond traditional security policies in order to achieve proper data protection. It is, therefore, imperative to perform security testing and make sure that there are no holes in the system, before an attack happens. One of the most commonly used web application attacks is by insertion of an SQL query from the client side of the application. This attack is called SQL Injection. Since an SQL Injection vulnerability could possibly affect any website or web application that makes use of an SQL-based database, the vulnerability is one of the oldest, most prevalent and most dangerous of web application vulnerabilities. To overcome the SQL injection problems, there is a need to use different security systems. In this paper, we will use 3 different scenarios for testing security systems. Using Penetration testing technique, we will try to find out which is the best solution for protecting sensitive data within the government network of Kosovo.
Data Deduplication provides lots of benefits to security and privacy issues which can arise as user's sensitive data at risk of within and out of doors attacks. Traditional secret writing that provides knowledge confidentiality is incompatible with knowledge deduplication. Ancient secret writing wants completely different users to encode their knowledge with their own keys. Thus, identical knowledge copies of completely different various users can result in different ciphertexts that makes Deduplication not possible. Convergent secret writing has been planned to enforce knowledge confidentiality whereas creating Deduplication possible. It encrypts/decrypts a knowledge copy with a confluent key, that is obtained by computing the cryptographical hash price of the content of the information copy. Once generation of key and encryption, the user can retain the keys and send ciphertext to cloud.
iOS devices are steadily obtaining popularity of the majority of users because of its some unique advantages in recent years. They can do many things that have been done on a desktop computer or laptop. With the increase in the use of mobile devices by individuals, organizations and government, there are many problems with information security especially some sensitive data related to users. As we all known, encryption algorithm play a significant role in data security. In order to prevent data being intercepted and being leaked during communication, in this paper, we adopted DES encryption algorithm that is fast, simple and suitable for large amounts of data of encryption to encrypt the data of iOS client and adopted the ECC encryption algorithms that was used to overcome the shortcoming of exchanging keys in a securing way before communications. In addition, we should also consider the application isolation and security mechanism of iOS that these features also protect the data securing to some extent. Namely, we propose an encryption algorithm combined the strengths of DES and ECC and make full use of the advantages of hybrid algorithm. Then, we tested and evaluated the performances of the suggested cryptography mechanism within the mobile platform of iOS. The results show that the algorithm has fairly efficiency in practical applications and strong anti-attack ability and it also improves the security and efficiency in data transmission.
The growing popularity of Android and the increasing amount of sensitive data stored in mobile devices have lead to the dissemination of Android ransomware. Ransomware is a class of malware that makes data inaccessible by blocking access to the device or, more frequently, by encrypting the data; to recover the data, the user has to pay a ransom to the attacker. A solution for this problem is to backup the data. Although backup tools are available for Android, these tools may be compromised or blocked by the ransomware itself. This paper presents the design and implementation of RANSOMSAFEDROID, a TrustZone based backup service for mobile devices. RANSOMSAFEDROID is protected from malware by leveraging the ARM TrustZone extension and running in the secure world. It does backup of files periodically to a secure local persistent partition and pushes these backups to external storage to protect them from ransomware. Initially, RANSOMSAFEDROID does a full backup of the device filesystem, then it does incremental backups that save the changes since the last backup. As a proof-of-concept, we implemented a RANSOMSAFEDROID prototype and provide a performance evaluation using an i.MX53 development board.
Cloud computing offers many advantages as flexibility or resource efficiency and can significantly reduce costs. However, when sensitive data is outsourced to a cloud provider, classified records can leak. To protect data owners and application providers from a privacy breach data must be encrypted before it is uploaded. In this work, we present a distributed key management scheme that handles user-specific keys in a single-tenant scenario. The underlying database is encrypted and the secret key is split into parts and only reconstructed temporarily in memory. Our scheme distributes shares of the key to the different entities. We address bootstrapping, key recovery, the adversary model and the resulting security guarantees.
The unauthorized access or theft of sensitive, personal information is becoming a weekly news item. The illegal dissemination of proprietary information to media outlets or competitors costs industry untold millions in remediation costs and losses every year. The 2013 data breach at Target, Inc. that impacted 70 million customers is estimated to cost upwards of 1 billion dollars. Stolen information is also being used to damage political figures and adversely influence foreign and domestic policy. In this paper, we offer some techniques for better understanding the health and security of our networks. This understanding will help professionals to identify network behavior, anomalies and other latent, systematic issues in their networks. Software-Defined Networks (SDN) enable the collection of network operation and configuration metrics that are not readily available, if available at all, in traditional networks. SDN also enables the development of software protocols and tools that increases visibility into the network. By accumulating and analyzing a time series data repository (TSDR) of SDN and traditional metrics along with data gathered from our tools we can establish behavior and security patterns for SDN and SDN hybrid networks. Our research helps provide a framework for a range of techniques for administrators and automated system protection services that give insight into the health and security of the network. To narrow the scope of our research, this paper focuses on a subset of those techniques as they apply to the confidence analysis of a specific network path at the time of use or inspection. This confidence analysis allows users, administrators and autonomous systems to decide whether a network path is secure enough for sending their sensitive information. Our testing shows that malicious activity can be identified quickly as a single metric indicator and consistently within a multi-factor indicator analysis. Our research includes the implementation of - hese techniques in a network path confidence analysis service, called Confidence Assessment as a Service. Using our behavior and security patterns, this service evaluates a specific network path and provides a confidence score for that path before, during and after the transmission of sensitive data. Our research and tools give administrators and autonomous systems a much better understanding of the internal operation and configuration of their networks. Our framework will also provide other services that will focus on detecting latent, systemic network problems. By providing a better understanding of network configuration and operation our research enables a more secure and dependable network and helps prevent the theft of information by malicious actors.
Sensitive data such as text messages, contact lists, and personal information are stored on mobile devices. This makes authentication of paramount importance. More security is needed on mobile devices since, after point-of-entry authentication, the user can perform almost all tasks without having to re-authenticate. For this reason, many authentication methods have been suggested to improve the security of mobile devices in a transparent and continuous manner, providing a basis for convenient and secure user re-authentication. This paper presents a comprehensive analysis and literature review on transparent authentication systems for mobile device security. This review indicates a need to investigate when to authenticate the mobile user by focusing on the sensitivity level of the application, and understanding whether a certain application may require a protection or not.