Biblio
This is a full paper for innovate practice. Building a private cloud or using a public cloud is now feasible at many institutions. This paper presents the innovative design of cloudbased labs and programming assignments for a networking course and a cybersecurity course, and our experiences of innovatively using the private cloud at our institution to support these learning activities. It is shown by the instructor's observations and student survey data that our approach benefits learning and teaching. This approach makes it possible and secure to develop some learning activities that otherwise would not be allowed on physical servers. It enables the instructor to support students' desire of developing programs in their preferred programming languages. It allows students to debug and test their programs on the same platform to be used by the instructor for testing and grading. The instructor does not need to spend extra time administrating the computing environments. A majority (88% or more) of the students agree that working on those learning activities in the private cloud not only helps them achieve the course learning objectives, but also prepares them for their future careers.
This Innovative Practice Work in Progress paper makes the case for using concept inventories in cybersecurity education and presents an example of the development of a concept inventory in the field of secure programming. The secure programming concept inventory is being developed by a team of researchers from four universities. We used a Delphi study to define the content area to be covered by the concept inventory. Participants in the Delphi study included ten experts from academia, government, and industry. Based on the results, we constructed a concept map of secure programming concepts. We then compared this concept map to the Joint Task Force on Cybersecurity Education Curriculum 2017 guidelines to ensure complete coverage of secure programming concepts. Our mapping indicates a substantial match between the concept map and those guidelines.
Novice programmers exhibit a repertoire of affective states over time when they are learning computer programming. The modeling of frustration is important as it informs on the need for pedagogical intervention of the student who may otherwise lose confidence and interest in the learning. In this paper, contextual and keystroke features of the students within a Java tutoring system are used to detect frustration of student within a programming exercise session. As compared to psychological sensors used in other studies, the use of contextual and keystroke logs are less obtrusive and the equipment used (keyboard) is ubiquitous in most learning environment. The technique of logistic regression with lasso regularization is utilized for the modeling to prevent over-fitting. The results showed that a model that uses only contextual and keystroke features achieved a prediction accuracy level of 0.67 and a recall measure of 0.833. Thus, we conclude that it is possible to detect frustration of a student from distilling both the contextual and keystroke logs within the tutoring system with an adequate level of accuracy.