Visible to the public Biblio

Found 110 results

Filters: Keyword is Cyber physical system  [Clear All Filters]
2019-08-12
Uto, K., Mura, M. D., Chanussot, J..  2018.  Spatial Resolution Enhancement of Optical Images Based on Tensor Decomposition. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. :8058-8061.

There is an inevitable trade-off between spatial and spectral resolutions in optical remote sensing images. A number of data fusion techniques of multimodal images with different spatial and spectral characteristics have been developed to generate optical images with both spatial and spectral high resolution. Although some of the techniques take the spectral and spatial blurring process into account, there is no method that attempts to retrieve an optical image with both spatial and spectral high resolution, a spectral blurring filter and a spectral response simultaneously. In this paper, we propose a new framework of spatial resolution enhancement by a fusion of multiple optical images with different characteristics based on tensor decomposition. An optical image with both spatial and spectral high resolution, together with a spatial blurring filter and a spectral response, is generated via canonical polyadic (CP) decomposition of a set of tensors. Experimental results featured that relatively reasonable results were obtained by regularization based on nonnegativity and coupling.

Vaidya, S. P..  2018.  Multipurpose Color Image Watermarking in Wavelet Domain Using Multiple Decomposition Techniques. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :251-255.

A multipurpose color image watermarking method is presented to provide \textcopyright protection and ownership verification of the multimedia information. For robust color image watermarking, color watermark is utilized to bring universality and immense applicability to the proposed scheme. The cover information is first converted to Red, Green and Blue components image. Each component is transformed in wavelet domain using DWT (Discrete Wavelet Transform) and then decomposition techniques like Singular Value Decomposition (SVD), QR and Schur decomposition are applied. Multiple watermark embedding provides the watermarking scheme free from error (false positive). The watermark is modified by scrambling it using Arnold transform. In the proposed watermarking scheme, robustness and quality is tested with metrics like Peak Signal to Noise Ratio (PSNR) and Normalized Correlation Coefficient (NCC). Further, the proposed scheme is compared with related watermarking schemes.

Ma, C., Yang, X., Wang, H..  2018.  Randomized Online CP Decomposition. 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI). :414-419.

CANDECOMP/PARAFAC (CP) decomposition has been widely used to deal with multi-way data. For real-time or large-scale tensors, based on the ideas of randomized-sampling CP decomposition algorithm and online CP decomposition algorithm, a novel CP decomposition algorithm called randomized online CP decomposition (ROCP) is proposed in this paper. The proposed algorithm can avoid forming full Khatri-Rao product, which leads to boost the speed largely and reduce memory usage. The experimental results on synthetic data and real-world data show the ROCP algorithm is able to cope with CP decomposition for large-scale tensors with arbitrary number of dimensions. In addition, ROCP can reduce the computing time and memory usage dramatically, especially for large-scale tensors.

Nevriyanto, A., Sutarno, S., Siswanti, S. D., Erwin, E..  2018.  Image Steganography Using Combine of Discrete Wavelet Transform and Singular Value Decomposition for More Robustness and Higher Peak Signal Noise Ratio. 2018 International Conference on Electrical Engineering and Computer Science (ICECOS). :147-152.

This paper presents an image technique Discrete Wavelet Transform and Singular Value Decomposition for image steganography. We are using a text file and convert into an image as watermark and embed watermarks into the cover image. We evaluate performance and compare this method with other methods like Least Significant Bit, Discrete Cosine Transform, and Discrete Wavelet Transform using Peak Signal Noise Ratio and Mean Squared Error. The result of this experiment showed that combine of Discrete Wavelet Transform and Singular Value Decomposition performance is better than the Least Significant Bit, Discrete Cosine Transform, and Discrete Wavelet Transform. The result of Peak Signal Noise Ratio obtained from Discrete Wavelet Transform and Singular Value Decomposition method is 57.0519 and 56.9520 while the result of Mean Squared Error is 0.1282 and 0.1311. Future work for this research is to add the encryption method on the data to be entered so that if there is an attack then the encryption method can secure the data becomes more secure.

2019-03-28
Joo, M., Seo, J., Oh, J., Park, M., Lee, K..  2018.  Situational Awareness Framework for Cyber Crime Prevention Model in Cyber Physical System. 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). :837-842.

Recently, IoT, 5G mobile, big data, and artificial intelligence are increasingly used in the real world. These technologies are based on convergenced in Cyber Physical System(Cps). Cps technology requires core technologies to ensure reliability, real-time, safety, autonomy, and security. CPS is the system that can connect between cyberspace and physical space. Cyberspace attacks are confused in the real world and have a lot of damage. The personal information that dealing in CPS has high confidentiality, so the policies and technique will needed to protect the attack in advance. If there is an attack on the CPS, not only personal information but also national confidential data can be leaked. In order to prevent this, the risk is measured using the Factor Analysis of Information Risk (FAIR) Model, which can measure risk by element for situational awareness in CPS environment. To reduce risk by preventing attacks in CPS, this paper measures risk after using the concept of Crime Prevention Through Environmental Design(CPTED).

2018-04-02
Hill, Z., Nichols, W. M., Papa, M., Hale, J. C., Hawrylak, P. J..  2017.  Verifying Attack Graphs through Simulation. 2017 Resilience Week (RWS). :64–67.

Verifying attacks against cyber physical systems can be a costly and time-consuming process. By using a simulated environment, attacks can be verified quickly and accurately. By combining the simulation of a cyber physical system with a hybrid attack graph, the effects of a series of exploits can be accurately analysed. Furthermore, the use of a simulated environment to verify attacks may uncover new information about the nature of the attacks.

2018-01-16
Ulrich, J., Drahos, J., Govindarasu, M..  2017.  A symmetric address translation approach for a network layer moving target defense to secure power grid networks. 2017 Resilience Week (RWS). :163–169.

This paper will suggest a robust method for a network layer Moving Target Defense (MTD) using symmetric packet scheduling rules. The MTD is implemented and tested on a Supervisory Control and Data Acquisition (SCADA) network testbed. This method is shown to be efficient while providing security benefits to the issues faced by the static nature of SCADA networks. The proposed method is an automated tool that may provide defense in depth when be used in conjunction with other MTDs and traditional security devices.

2017-11-27
Ashok, A., Krishnaswamy, S., Govindarasu, M..  2016.  PowerCyber: A remotely accessible testbed for Cyber Physical security of the Smart Grid. 2016 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Cyber Physical Systems (CPS) security testbeds serve as a platform for evaluating and validating novel CPS security tools and technologies, accelerating the transition of state-of-the-art research to industrial practice. The engineering of CPS security testbeds requires significant investments in money, time and modeling efforts to provide a scalable, high-fidelity, real-time attack-defense platform. Therefore, there is a strong need in academia and industry to create remotely accessible testbeds that support a range of use-cases pertaining to CPS security of the grid, including vulnerability assessments, impact analysis, product testing, attack-defense exercises, and operator training. This paper describes the implementation architecture, and capabilities of a remote access and experimental orchestration framework developed for the PowerCyber CPS security testbed at Iowa State University (ISU). The paper then describes several engineering challenges in the development of such remotely accessible testbeds for Smart Grid CPS security experimentation. Finally, the paper provides a brief case study with some screenshots showing a particular use case scenario on the remote access framework.

2015-04-30
Howser, G., McMillin, B..  2014.  A Modal Model of Stuxnet Attacks on Cyber-physical Systems: A Matter of Trust. Software Security and Reliability (SERE), 2014 Eighth International Conference on. :225-234.

Multiple Security Domains Nondeducibility, MSDND, yields results even when the attack hides important information from electronic monitors and human operators. Because MSDND is based upon modal frames, it is able to analyze the event system as it progresses rather than relying on traces of the system. Not only does it provide results as the system evolves, MSDND can point out attacks designed to be missed in other security models. This work examines information flow disruption attacks such as Stuxnet and formally explains the role that implicit trust in the cyber security of a cyber physical system (CPS) plays in the success of the attack. The fact that the attack hides behind MSDND can be used to help secure the system by modifications to break MSDND and leave the attack nowhere to hide. Modal operators are defined to allow the manipulation of belief and trust states within the model. We show how the attack hides and uses the operator's trust to remain undetected. In fact, trust in the CPS is key to the success of the attack.

Manandhar, K., Xiaojun Cao, Fei Hu, Yao Liu.  2014.  Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter. Control of Network Systems, IEEE Transactions on. 1:370-379.

By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical model of the system to study these pitfalls and propose a robust security framework for the smart grid. Our framework adopts the Kalman filter to estimate the variables of a wide range of state processes in the model. The estimates from the Kalman filter and the system readings are then fed into the χ2-detector or the proposed Euclidean detector. The χ2-detector is a proven effective exploratory method used with the Kalman filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ2-detector can detect system faults/attacks, such as DoS attack, short-term, and long-term random attacks. However, the studies show that the χ2-detector is unable to detect the statistically derived false data-injection attack. To overcome this limitation, we prove that the Euclidean detector can effectively detect such a sophisticated injection attack.