Biblio
Growing amounts of research on IoT and its implications for security, privacy, economy and society has been carried out to inform policies and design. However, ordinary people who are citizens and users of these emerging technologies have rarely been involved in the processes that inform these policies, governance mechanisms and design due to the institutionalised processes that prioritise objective knowledge over subjective ones. People's subjective experiences are often discarded. This priority is likely to further widen the gap between people, technology policies and design as technologies advance towards delegated human agencies, which decreases human interfaces in technology-mediated relationships with objects, systems, services, trade and other (often) unknown third-party beneficiaries. Such a disconnection can have serious implications for policy implementation, especially when it involves human limitations. To address this disconnection, we argue that a space for people to meaningfully contribute their subjective knowledge — experience- to complex technology policies that, in turn, shape their experience and well-being needs to be constructed. To this end, our paper contributes the design and pilot implementation of a method to reconnect and involve people in IoT security policymaking and development.
Upon the new paradigm of Cellular Internet of Things, through the usage of technologies such as Narrowband IoT (NB-IoT), a massive amount of IoT devices will be able to use the mobile network infrastructure to perform their communications. However, it would be beneficial for these devices to use the same security mechanisms that are present in the cellular network architecture, so that their connections to the application layer could see an increase on security. As a way to approach this, an identity management and provisioning mechanism, as well as an identity federation between an IoT platform and the cellular network is proposed as a way to make an IoT device deemed worthy of using the cellular network and perform its actions.
Internet of Things is nowadays growing faster than ever before. Operators are planning or already creating dedicated networks for this type of devices. There is a need to create dedicated solutions for this type of network, especially solutions related to information security. In this article we present a mechanism of security-aware routing, which takes into account the evaluation of trust in devices and packet flows. We use trust relationships between flows and network nodes to create secure SDN paths, not ignoring also QoS and energy criteria. The system uses SDN infrastructure, enriched with Cognitive Packet Networks (CPN) mechanisms. Routing decisions are made by Random Neural Networks, trained with data fetched with Cognitive Packets. The proposed network architecture, implementing the security-by-design concept, was designed and is being implemented within the SerIoT project to demonstrate secure networks for the Internet of Things (IoT).
In recent years, there is a surge of interest in approaches pertaining to security issues of Internet of Things deployments and applications that leverage machine learning and deep learning techniques. A key prerequisite for enabling such approaches is the development of scalable infrastructures for collecting and processing security-related datasets from IoT systems and devices. This paper introduces such a scalable and configurable data collection infrastructure for data-driven IoT security. It emphasizes the collection of (security) data from different elements of IoT systems, including individual devices and smart objects, edge nodes, IoT platforms, and entire clouds. The scalability of the introduced infrastructure stems from the integration of state of the art technologies for large scale data collection, streaming and storage, while its configurability relies on an extensible approach to modelling security data from a variety of IoT systems and devices. The approach enables the instantiation and deployment of security data collection systems over complex IoT deployments, which is a foundation for applying effective security analytics algorithms towards identifying threats, vulnerabilities and related attack patterns.
Nowadays, physical health of equipment controlled by Cyber-Physical Systems (CPS) is a significant concern. This paper reports a work, in which, a hardware is placed between Programmable Logic Controller (PLC) and the actuator as a solution. The proposed hardware operates in two conditions, i.e. passive and active. Operation of the proposed solution is based on the repetitive operational profile of the actuators. The normal operational profile of the actuator is fed to the protective hardware and is considered as the normal operating condition. In the normal operating condition, the middleware operates in its passive mode and simply monitors electronic signals passing between PLC and Actuator. In case of any malicious operation, the proposed hardware operates in its active mode and both slowly stops the actuator and sends an alert to SCADA server initiating execution of the actuator's emergency profile. Thus, the proposed hardware gains control over the actuator and prevents any physical damage on the operating devices. Two sample experiments are reported in which, results of implementing the proposed solution are reported and assessed. Results show that once the PLC sends incorrect data to actuator, the proposed hardware detects it as an anomaly. Therefore, it does not allow the PLC to send incorrect and unauthorized data pattern to its actuator. Significance of the paper is in introducing a solution to prevent destruction of physical devices apart from source or purpose of the encountered anomaly and apart from CPS functionality or PLC model and operation.
The Internet of Things (IoT) market is growing rapidly, allowing continuous evolution of new technologies. Alongside this development, most IoT devices are easy to compromise, as security is often not a prioritized characteristic. This paper proposes a novel IoT Security Model (IoTSM) that can be used by organizations to formulate and implement a strategy for developing end-to-end IoT security. IoTSM is grounded by the Software Assurance Maturity Model (SAMM) framework, however it expands it with new security practices and empirical data gathered from IoT practitioners. Moreover, we generalize the model into a conceptual framework. This approach allows the formal analysis for security in general and evaluates an organization's security practices. Overall, our proposed approach can help researchers, practitioners, and IoT organizations, to discourse about IoT security from an end-to-end perspective.
Although the vision of 5G is to accommodate billions IoT devices and applications, its success depends very much on its ability to provide enhanced and affordable security. This paper introduces an Identity Federation solution which reuses the SIM authentication for cellular IoT devices enabling single-sign-on. The proposed solution alleviates the IoT provider's burden of device identity management at the same time as the operational costs are reduced considerably. The proposed solution is realized by open source software for LTE, identity management and IoT.
The Internet of Things (IoT) is an emerging technology, an extension of the traditional Internet which make everything is connected each other based on Radio Frequency Identification (RFID), Sensor, GPS or Machine to Machine technologies, etc. The security issues surrounding IoT have been of detrimental impact to its development and has consequently attracted research interest. However, there are very few approaches which assess the security of IoT from the perspective of an attacker. Penetration testing is widely used to evaluate traditional internet or systems security to date and it normally spends numerous cost and time. In this paper, we analyze the security problems of IoT and propose a penetration testing approach and its automation based on belief-desire-intention (BDI) model to evaluate the security of the IoT.
The Internet of things (IoT) is a distributed, networked system composed of many embedded sensor devices. Unfortunately, these devices are resource constrained and susceptible to malicious data-integrity attacks and failures, leading to unreliability and sometimes to major failure of parts of the entire system. Intrusion detection and failure handling are essential requirements for IoT security. Nevertheless, as far as we know, the area of data-integrity detection for IoT has yet to receive much attention. Most previous intrusion-detection methods proposed for IoT, particularly for wireless sensor networks (WSNs), focus only on specific types of network attacks. Moreover, these approaches usually rely on using precise values to specify abnormality thresholds. However, sensor readings are often imprecise and crisp threshold values are inappropriate. To guarantee a lightweight, dependable monitoring system, we propose a novel hierarchical framework for detecting abnormal nodes in WSNs. The proposed approach uses fuzzy logic in event-condition-action (ECA) rule-based WSNs to detect malicious nodes, while also considering failed nodes. The spatiotemporal semantics of heterogeneous sensor readings are considered in the decision process to distinguish malicious data from other anomalies. Following our experiments with the proposed framework, we stress the significance of considering the sensor correlations to achieve detection accuracy, which has been neglected in previous studies. Our experiments using real-world sensor data demonstrate that our approach can provide high detection accuracy with low false-alarm rates. We also show that our approach performs well when compared to two well-known classification algorithms.
Collaborative smart services provide functionalities which exploit data collected from different sources to provide benefits to a community of users. Such data, however, might be privacy sensitive and their disclosure has to be avoided. In this paper, we present a distributed multi-tier framework intended for smart-environment management, based on usage control for policy evaluation and enforcement on devices belonging to different collaborating entities. The proposed framework exploits secure multi-party computation to evaluate policy conditions without disclosing actual value of evaluated attributes, to preserve privacy. As reference example, a smart-grid use case is presented.
Recently, as the age of the Internet of Things is approaching, there are more and more devices that communicate data with each other by incorporating sensors and communication functions in various objects. If the IoT is miniaturized, it can be regarded as a sensor having only the sensing ability and the low performance communication ability. Low-performance sensors are difficult to use high-quality communication, and wireless security used in expensive wireless communication devices cannot be applied. Therefore, this paper proposes authentication and key Agreement that can be applied in sensor networks using communication with speed less than 1 Kbps and has limited performances.
The Internet of Things (IoT) is the network where physical devices, sensors, appliances and other different objects can communicate with each other without the need for human intervention. Wireless Sensor Networks (WSNs) are main building blocks of the IoT. Both the IoT and WSNs have many critical and non-critical applications that touch almost every aspect of our modern life. Unfortunately, these networks are prone to various types of security threats. Therefore, the security of IoT and WSNs became crucial. Furthermore, the resource limitations of the devices used in these networks complicate the problem. One of the most recent and effective approaches to address such challenges is machine learning. Machine learning inspires many solutions to secure the IoT and WSNs. In this paper, we survey the different threats that can attack both IoT and WSNs and the machine learning techniques developed to counter them.
Internet of Things refers to a paradigm consisting of a variety of uniquely identifiable day to day things communicating with one another to form a large scale dynamic network. Securing access to this network is a current challenging issue. This paper proposes an encryption system suitable to IoT features. In this system we integrated the fuzzy commitment scheme in DCT-based recognition method for fingerprint. To demonstrate the efficiency of our scheme, the obtained results are analyzed and compared with direct matching (without encryption) according to the most used criteria; FAR and FRR.
Popularization of the Internet-of-Things (IoT) has brought widespread concerns on IoT security, especially in face of several recent security incidents related to IoT devices. Due to the resource-constrained nature of many IoT devices, security offloading has been proposed to provide good-enough security for IoT with minimum overhead on the devices. In this paper, we investigate the inevitable risk associated with security offloading: the unprotected and unmonitored transmission from IoT devices to the offloaded security mechanisms. An important challenge in modeling the security risk is the dynamic nature of IoT due to demand fluctuations and infrastructure instability. We propose a stochastic model to capture both the expected and worst-case security risks of an IoT system. We then propose a framework to efficiently address the optimal robust deployment of security mechanisms in IoT. We use results from extensive simulations to demonstrate the superb performance and efficiency of our approach compared to several other algorithms.
An attack detection scheme is proposed to detect data integrity attacks on sensors in Cyber-Physical Systems (CPSs). A combined fingerprint for sensor and process noise is created during the normal operation of the system. Under sensor spoofing attack, noise pattern deviates from the fingerprinted pattern enabling the proposed scheme to detect attacks. To extract the noise (difference between expected and observed value) a representative model of the system is derived. A Kalman filter is used for the purpose of state estimation. By subtracting the state estimates from the real system states, a residual vector is obtained. It is shown that in steady state the residual vector is a function of process and sensor noise. A set of time domain and frequency domain features is extracted from the residual vector. Feature set is provided to a machine learning algorithm to identify the sensor and process. Experiments are performed on two testbeds, a real-world water treatment (SWaT) facility and a water distribution (WADI) testbed. A class of zero-alarm attacks, designed for statistical detectors on SWaT are detected by the proposed scheme. It is shown that a multitude of sensors can be uniquely identified with accuracy higher than 90% based on the noise fingerprint.
The Semantic Web can be used to enable the interoperability of IoT devices and to annotate their functional and nonfunctional properties, including security and privacy. In this paper, we will show how to use the ontology and JSON-LD to annotate connectivity, security and privacy properties of IoT devices. Out of that, we will present our prototype for a lightweight, secure application level protocol wrapper that ensures communication consistency, secrecy and integrity for low cost IoT devices like the ESP8266 and Photon particle.
In Sybil attacks, a physical adversary takes multiple fabricated or stolen identities to maliciously manipulate the network. These attacks are very harmful for Internet of Things (IoT) applications. In this paper we implemented and evaluated the performance of RPL (Routing Protocol for Low-Power and Lossy Networks) routing protocol under mobile sybil attacks, namely SybM, with respect to control overhead, packet delivery and energy consumption. In SybM attacks, Sybil nodes take the advantage of their mobility and the weakness of RPL to handle identity and mobility, to flood the network with fake control messages from different locations. To counter these type of attacks we propose a trust-based intrusion detection system based on RPL.