Biblio
Over the years, technology has reformed the perception of the world related to security concerns. To tackle security problems, we proposed a system capable of detecting security alerts. System encompass audio events that occur as an outlier against background of unusual activity. This ambiguous behaviour can be handled by auditory classification. In this paper, we have discussed two techniques of extracting features from sound data including: time-based and signal based features. In first technique, we preserve time-series nature of sound, while in other signal characteristics are focused. Convolution neural network is applied for categorization of sound. Major aim of research is security challenges, so we have generated data related to surveillance in addition to available datasets such as UrbanSound 8k and ESC-50 datasets. We have achieved 94.6% accuracy for proposed methodology based on self-generated dataset. Improved accuracy on locally prepared dataset demonstrates novelty in research.
The advent and widespread adoption of wearable cameras and autonomous robots raises important issues related to privacy. The mobile cameras on these systems record and may re-transmit enormous amounts of video data that can then be used to identify, track, and characterize the behavior of the general populous. This paper presents a preliminary computational architecture designed to preserve specific types of privacy over a video stream by identifying categories of individuals, places, and things that require higher than normal privacy protection. This paper describes the architecture as a whole as well as preliminary results testing aspects of the system. Our intention is to implement and test the system on ground robots and small UAVs and demonstrate that the system can provide selective low-level masking or deletion of data requiring higher privacy protection.
As cyber-physical systems (CPS) become prevalent in everyday life, it is critical to understand the factors that may impact the security of such systems. In this paper, we present insights from an initial study of historical security incidents to analyse such factors for a particular class of CPS: industrial control systems (ICS). Our study challenges the usual tendency to blame human fallibility or resort to simple explanations for what are often complex issues that lead to a security incident. We highlight that (i) perception errors are key in such incidents (ii) latent design conditions – e.g., improper specifications of a system's borders and capabilities – play a fundamental role in shaping perceptions, leading to security issues. Such design-time considerations are particularly critical for ICS, the life-cycle of which is usually measured in decades. Based on this analysis, we discuss how key characteristics of future smart CPS in such industrial settings can pose further challenges with regards to tackling latent design flaws.