Biblio
The United States and European Union have an increasing number of projects that are engaging end-use devices for improved grid capabilities. Areas such as building-to-grid and vehicle-to-grid are simple examples of these advanced capabilities. In this paper, we present an innovative concept study for a ship-to-grid integration. The goal of this study is to simulate a two-way power flow between ship(s) and the grid with GridLAB-D for the port of Kyllini in Greece, where a ship-to-shore interconnection was recently implemented. Extending this further, we explore: (a) the ability of ships to meet their load demand needs, while at berth, by being supplied with energy from the electric grid and thus powering off their diesel engines; and (b) the ability of ships to provide power to critical loads onshore. As a result, the ship-to-grid integration helps (a) mitigate environmental pollutants from the ships' diesel engines and (b) provide resilience to nearby communities during a power disruption due to natural disasters or man-made threats.
Mobile Ad Hoc Network (MANET) technology provides intercommunication between different nodes where no infrastructure is available for communication. MANET is attracting many researcher attentions as it is cost effective and easy for implementation. Main challenging aspect in MANET is its vulnerability. In MANET nodes are very much vulnerable to attacks along with its data as well as data flowing through these nodes. One of the main reasons of these vulnerabilities is its communication policy which makes nodes interdependent for interaction and data flow. This mutual trust between nodes is exploited by attackers through injecting malicious node or replicating any legitimate node in MANET. One of these attacks is blackhole attack. In this study, the behavior of blackhole attack is discussed and have proposed a lightweight solution for blackhole attack which uses inbuilt functions.
In the field of communication, the need for cryptography is growing faster, so it is very difficult to achieve the objectives of cryptography such as confidentiality, data integrity, non-repudiation. To ensure data security, key scheduling and key management are the factors which the algorithm depends. In this paper, the enciphering and deciphering process of the SERPENT algorithm is done using the graphical programming tool. It is an algorithm which uses substitution permutation network procedure which contains round function including key scheduling, s-box and linear mixing stages. It is fast and easy to actualize and it requires little memory.
Intellectual property is inextricably linked to the innovative development of mass innovation spaces. The synthetic development of intellectual property and mass innovation spaces will fundamentally support the new economic model of “mass entrepreneurship and innovation”. As such, it is critical to explore intellectual property service standards for mass innovation spaces and to steer mass innovation spaces to the creation of an intellectual property service system catering to “makers”. In addition, it is crucial to explore intellectual cluster management innovations for mass innovation spaces.
In today's growing concern for home security, we have developed an advanced security system using integrated digital signature and DNA cryptography. The digital signature is formed using multi-feature biometric traits which includes both fingerprint as well as iris image. We further increase the security by using DNA cryptography which is embedded on a smart card. In order to prevent unauthorized access manually or digitally, we use geo-detection which compares the unregistered devices location with the user's location using any of their personal devices such as smart phone or tab.
Many innovations in the field of cryptography have been made in recent decades, ensuring the confidentiality of the message's content. However, sometimes it's not enough to secure the message, and communicating parties need to hide the fact of the presence of any communication. This problem is solved by covert channels. A huge number of ideas and implementations of different types of covert channels was proposed ever since the covert channels were mentioned for the first time. The spread of the Internet and networking technologies was the reason for the use of network protocols for the invention of new covert communication methods and has led to the emergence of a new class of threats related to the data leakage via network covert channels. In recent years, web applications, such as web browsers, email clients and web messengers have become indispensable elements in business and everyday life. That's why ubiquitous HTTP messages are so useful as a covert information containers. The use of HTTP for the implementation of covert channels may increase the capacity of covert channels due to HTTP's flexibility and wide distribution as well. We propose a detailed analysis of all known HTTP covert channels and techniques of their detection and capacity limitation.
In last twenty years, use of internet applications, web hacking activities have exaggerated speedily. Organizations facing very significant challenges in securing their web applications from rising cyber threats, as compromise with the protection issues don't seem to be reasonable. Vulnerability Assessment and Penetration Testing (VAPT) techniques help them to go looking out security loopholes. These security loopholes could also be utilized by attackers to launch attacks on technical assets. Thus it is necessary ascertain these vulnerabilities and install security patches. VAPT helps organization to determine whether their security arrangements are working properly. This paper aims to elucidate overview and various techniques used in vulnerability assessment and penetration testing (VAPT). Also focuses on making cyber security awareness and its importance at various level of an organization for adoption of required up to date security measures by the organization to stay protected from various cyber-attacks.