Visible to the public Biblio

Filters: Keyword is control system synthesis  [Clear All Filters]
2021-03-22
Yang, S., Liu, S., Huang, J., Su, H., Wang, H..  2020.  Control Conflict Suppressing and Stability Improving for an MMC Distributed Control System. IEEE Transactions on Power Electronics. 35:13735–13747.
Compared with traditional centralized control strategies, the distributed control systems significantly improve the flexibility and expandability of an modular multilevel converter (MMC). However, the stability issue in the MMC distributed control system with the presence of control loop coupling interactions is rarely discussed in existing research works. This article is to improve the stability of an MMC distributed control system by inhibiting the control conflict due to the coupling interactions among control loops with incomplete control information. By modeling the MMC distributed control system, the control loop coupling interactions are analyzed and the essential cause of control conflict is revealed. Accordingly, a control parameter design principle is proposed to effectively suppress the disturbances from the targeted control conflict and improve the MMC system stability. The rationality of the theoretical analysis and the effectiveness of the control parameter design principle are confirmed by simulation and experimental results.
2021-01-25
Issa, H., Tar, J. K..  2020.  Tackling Actuator Saturation in Fixed Point Iteration-based Adaptive Control. 2020 IEEE 14th International Symposium on Applied Computational Intelligence and Informatics (SACI). :000221–000226.
The limited output of various drives means a challenge in controller design whenever the acceleration need of the "nominal trajectory to be tracked" temporarily exceeds the abilities of the saturated control system. The prevailing control design methods can tackle this problem either in a single theoretical step or in two consecutive steps. In this latter case in the first step the design happens without taking into account the actuator constraints, then apply a saturation compensator if the phenomenon of windup is observed. In the Fixed Point Iteration- based Adaptive Control (FPIAC) that has been developed as an alternative of the Lyapunov function-based approach the actuator saturation causes problems in its both elementary levels: in the kinematic/kinetic level where the desired acceleration is calculated, and in the iterative process that compensates the effects of modeling errors of the dynamic system under control and that of the external disturbances. The here presented approach tackles this problem in both levels by relatively simple considerations. To illustrate the method's efficiency simulation investigations were done in the FPIAC control of a modification of the van der Pol oscillator to which an additional strongly nonlinear term was added.
2020-12-14
Tousi, S. Mohamad Ali, Mostafanasab, A., Teshnehlab, M..  2020.  Design of Self Tuning PID Controller Based on Competitional PSO. 2020 4th Conference on Swarm Intelligence and Evolutionary Computation (CSIEC). :022–026.
In this work, a new particle swarm optimization (PSO)-based optimization algorithm, and the idea of a running match is introduced and employed in a non-linear system PID controller design. This algorithm aims to modify the formula of velocity calculating of the general PSO method to increase the diversity of the searching process. In this process of designing an optimal PID controller for a non-linear system, the three gains of the PID controller form a particle, which is a parameter vector and will be updated iteratively. Many of those particles then form a population. To reach the PID gains which are optimum, using modified velocity updating formula and position updating formula, the position of all particles of the population will be moved into the optimization direction. In the meanwhile, an objective function may be minimized as the performance of the controller get improved. To corroborate the controller functioning of this method, a non-linear system known as inverted pendulum will be controlled by the designed PID controller. The results confirm that the new method can show excellent performance in the non-linear PID controller design task.
2020-10-05
Zamani, Majid, Arcak, Murat.  2018.  Compositional Abstraction for Networks of Control Systems: A Dissipativity Approach. IEEE Transactions on Control of Network Systems. 5:1003—1015.

In this paper, we propose a compositional scheme for the construction of abstractions for networks of control systems by using the interconnection matrix and joint dissipativity-type properties of subsystems and their abstractions. In the proposed framework, the abstraction, itself a control system (possibly with a lower dimension), can be used as a substitution of the original system in the controller design process. Moreover, we provide a procedure for constructing abstractions of a class of nonlinear control systems by using the bounds on the slope of system nonlinearities. We illustrate the proposed results on a network of linear control systems by constructing its abstraction in a compositional way without requiring any condition on the number or gains of the subsystems. We use the abstraction as a substitute to synthesize a controller enforcing a certain linear temporal logic specification. This example particularly elucidates the effectiveness of dissipativity-type compositional reasoning for large-scale systems.

Rungger, Matthias, Zamani, Majid.  2018.  Compositional Construction of Approximate Abstractions of Interconnected Control Systems. IEEE Transactions on Control of Network Systems. 5:116—127.

We consider a compositional construction of approximate abstractions of interconnected control systems. In our framework, an abstraction acts as a substitute in the controller design process and is itself a continuous control system. The abstraction is related to the concrete control system via a so-called simulation function: a Lyapunov-like function, which is used to establish a quantitative bound between the behavior of the approximate abstraction and the concrete system. In the first part of the paper, we provide a small gain type condition that facilitates the compositional construction of an abstraction of an interconnected control system together with a simulation function from the abstractions and simulation functions of the individual subsystems. In the second part of the paper, we restrict our attention to linear control system and characterize simulation functions in terms of controlled invariant, externally stabilizable subspaces. Based on those characterizations, we propose a particular scheme to construct abstractions for linear control systems. We illustrate the compositional construction of an abstraction on an interconnected system consisting of four linear subsystems. We use the abstraction as a substitute to synthesize a controller to enforce a certain linear temporal logic specification.

Kanellopoulos, Aris, Vamvoudakis, Kyriakos G., Gupta, Vijay.  2019.  Decentralized Verification for Dissipativity of Cascade Interconnected Systems. 2019 IEEE 58th Conference on Decision and Control (CDC). :3629—3634.

In this paper, we consider the problem of decentralized verification for large-scale cascade interconnections of linear subsystems such that dissipativity properties of the overall system are guaranteed with minimum knowledge of the dynamics. In order to achieve compositionality, we distribute the verification process among the individual subsystems, which utilize limited information received locally from their immediate neighbors. Furthermore, to obviate the need for full knowledge of the subsystem parameters, each decentralized verification rule employs a model-free learning structure; a reinforcement learning algorithm that allows for online evaluation of the appropriate storage function that can be used to verify dissipativity of the system up to that point. Finally, we show how the interconnection can be extended by adding learning-enabled subsystems while ensuring dissipativity.

2020-07-24
Voronkov, Oleg Yu..  2019.  Synergetic Synthesis of the Hierarchical Control System of the “Flying Platform”. 2019 III International Conference on Control in Technical Systems (CTS). :23—26.
The work is devoted to the synthesis of an aircraft control system using a synergetic control theory. The paper contains a general description of the apparatus and its control system, a synthesis of control laws, and a computer simulation. The relevance of the work consists in the need to create a vertically take-off aircraft of the “flying platform” type in order to increase the efficiency of rescue operations in disaster zones where helicopters and other modern means can't cope with the task. The scientific novelty of the work consists in the application of synergetic approaches to the development of a hierarchical system for balancing the vehicle spatial position and to the coordinating energy-saving control of electric motors that receive energy from a turbine generator.
2020-05-08
Su, Yu, Wu, Jing, Long, Chengnian, Li, Shaoyuan.  2018.  Event-triggered Control for Networked Control Systems Under Replay Attacks. 2018 Chinese Automation Congress (CAC). :2636—2641.
With wide application of networked control systems(N CSs), NCSs security have encountered severe challenges. In this paper, we propose a robust event-triggered controller design method under replay attacks, and the control signal on the plant is updated only when the event-triggering condition is satisfied. We develop a general random replay attack model rather than predetermined specific patterns for the occurrences of replay attacks, which allows to obtain random states to replay. We show that the proposed event-triggered control (ETC) scheme, if well designed, can tolerate some consecutive replay attacks, without affecting the corresponding closed-loop system stability and performance. A numerical examples is finally given to illustrate the effectiveness of our method.
Yang, Zai-xin, Gao, Chen, Wang, Yun-min.  2018.  Security and Stability Control System Simulation Using RTDS. 2018 13th World Congress on Intelligent Control and Automation (WCICA). :1737—1740.
Analyzing performance of security and stability control system is of great importance for the safe and stable operation of the power grid. Digital dynamic experimental model is built by real time digital simulation (RTDS) in order to research security and stability system of Inner Mongolia in northern 500kV transmission channel. The whole process is closed-loop dynamic real-time simulation. According to power grid network testing technology standard, all kinds of stability control devices need to be tested in a comprehensive system. Focus on the following items: security and stability control strategy, tripping criterion as well as power system low frequency oscillations. Results of the trial indicated that the simulation test platform based on RTDS have the ability of detecting the safe and stable device. It can reflect the action behavior and control characteristics of the safe and stable device accurately. The device can be used in the case of low frequency oscillation of the system.
2020-05-04
Zhang, Meng, Shen, Chao, Han, Sicong.  2019.  A Compensation Control Scheme against DoS Attack for Nonlinear Cyber-Physical Systems. 2019 Chinese Control Conference (CCC). :144–149.

This paper proposes a compensation control scheme against DoS attack for nonlinear cyber-physical systems (CPSs). The dynamical process of the nonlinear CPSs are described by T-S fuzzy model that regulated by the corresponding fuzzy rules. The communication link between the controller and the actuator under consideration may be unreliable, where Denialof-Service (DoS) attack is supposed to invade the communication link randomly. To compensate the negative effect caused by DoS attack, a compensation control scheme is designed to maintain the stability of the closed-loop system. With the aid of the Lyapunov function theory, a sufficient condition is established to ensure the stochastic stability and strict dissipativity of the closed-loop system. Finally, an iterative linearization algorithm is designed to determine the controller gain and the effectiveness of the proposed approach is evaluated through simulations.

Chen, Jiaojiao, Liang, Xiangyang.  2019.  L2 Control for Networked Control Systems Subject to Denial-of-Service Attacks. 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA). :502–505.
This paper focuses on the issue of designing L2 state feedback controller for networked control systems subject to unknown periodic denial-of-service (DoS) jamming attacks. Primarily, a resilient event-triggering mechanism is introduced to counteract the influence of DoS jamming attacks. Secondly, a switching system model of NCSs is set up. Then, the criteria of the exponential stability analysis is obtained by the piecewise Lyapunov functional approach based on the model. Thirdly, a co-design approach of the trigger parameters and L2 controller is developed. Lastly, a practical system is used for proving the efficiency of the proposed approach.
2020-01-13
Shen, Yitong, Wang, Lingfeng, Lau, Jim Pikkin, Liu, Zhaoxi.  2019.  A Robust Control Architecture for Mitigating Sensor and Actuator Attacks on PV Converter. 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia). :970–975.
The cybersecurity of the modern control system is becoming a critical issue to the cyber-physical systems (CPS). Mitigating potential cyberattacks in the control system is an important concern in the controller design to enhance the resilience of the overall system. This paper presents a novel robust control architecture for the PV converter system to mitigate the sensor and actuator attack and reduce the influence of the system uncertainty. The sensor and actuator attack is a vicious attack scenario when the attack signals are injected into the sensor and actuator in a CPS simultaneously. A p-synthesis robust control architecture is proposed to mitigate the sensor and actuator attack and limit the system uncertainty perturbations in a DC-DC photovoltaic (PV) converter. A new system state matrix and control architecture is presented by integrating the original system state, injected attack signals and system uncertainty perturbations. In the case study, the proposed μ-synthesis robust controller exhibits a robust performance in the face of the sensor and actuator attack.
2019-01-21
Kafash, S. H., Giraldo, J., Murguia, C., Cárdenas, A. A., Ruths, J..  2018.  Constraining Attacker Capabilities Through Actuator Saturation. 2018 Annual American Control Conference (ACC). :986–991.
For LTI control systems, we provide mathematical tools - in terms of Linear Matrix Inequalities - for computing outer ellipsoidal bounds on the reachable sets that attacks can induce in the system when they are subject to the physical limits of the actuators. Next, for a given set of dangerous states, states that (if reached) compromise the integrity or safe operation of the system, we provide tools for designing new artificial limits on the actuators (smaller than their physical bounds) such that the new ellipsoidal bounds (and thus the new reachable sets) are as large as possible (in terms of volume) while guaranteeing that the dangerous states are not reachable. This guarantees that the new bounds cut as little as possible from the original reachable set to minimize the loss of system performance. Computer simulations using a platoon of vehicles are presented to illustrate the performance of our tools.
Han, K., Li, S., Wang, Z., Yang, X..  2018.  Actuator deception attack detection and estimation for a class of nonlinear systems. 2018 37th Chinese Control Conference (CCC). :5675–5680.
In this paper, an novel active safety monitoring system is constructed for a class of nonlinear discrete-time systems. The considered nonlinear system is subjected to unknown inputs, external disturbances, and possible unknown deception attacks, simultaneously. In order to secure the safety of control systems, an active attack estimator composed of state/output estimator, attack detector and attack/attacker action estimator is constructed to monitor the system running status. The analysis and synthesis of attack estimator is performed in the H∞performance optimization manner. The off-line calculation and on-line application of active attack estimator are summarized simultaneously. The effectiveness of the proposed results is finally verified by an numerical example.
2018-09-28
Dem'yanov, D. N..  2017.  Analytical synthesis of reduced order observer for estimation of the bilinear dynamic system state. 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1–5.

The problem of analytical synthesis of the reduced order state observer for the bilinear dynamic system with scalar input and vector output has been considered. Formulas for calculation of the matrix coefficients of the nonlinear observer with estimation error asymptotically approaching zero have been obtained. Two modifications of observer dynamic equation have been proposed: the first one requires differentiation of an output signal and the second one does not. Based on the matrix canonization technology, the solvability conditions for the synthesis problem and analytical expressions for an acceptable set of solutions have been received. A precise step-by-step algorithm for calculating the observer coefficients has been offered. An example of the practical use of the developed algorithm has been given.

2018-06-11
Saleh, C., Mohsen, M..  2017.  FBG security fence for intrusion detection. 2017 International Conference on Engineering MIS (ICEMIS). :1–5.

The following topics are dealt with: feature extraction; data mining; support vector machines; mobile computing; photovoltaic power systems; mean square error methods; fault diagnosis; natural language processing; control system synthesis; and Internet of Things.

2018-01-23
Zhmud, V., Dimitrov, L., Taichenachev, A..  2017.  Model study of automatic and automated control of hysteretic object. 2017 International Siberian Conference on Control and Communications (SIBCON). :1–5.

This paper presents the results of research and simulation of feature automated control of a hysteretic object and the difference between automated control and automatic control. The main feature of automatic control is in the fact that the control loop contains human being as a regulator with its limited response speed. The human reaction can be described as integrating link. The hysteretic object characteristic is switching from one state to another. This is followed by a transient process from one to another characteristic. For this reason, it is very difficult to keep the object in a desired state. Automatic operation ensures fast switching of the feedback signal that produces such a mode, which in many ways is similar to the sliding mode. In the sliding mode control signal abruptly switches from maximum to minimum and vice versa. The average value provides the necessary action to the object. Theoretical analysis and simulation show that the use of the maximum value of the control signal is not required. It is sufficient that the switching oscillation amplitude is such that the output signal varies with the movement of the object along both branches with hysteretic characteristics in the fastest cycle. The average output value in this case corresponds to the prescribed value of the control task. With automated control, the human response can be approximately modeled by integrating regulator. In this case the amplitude fluctuation could be excessively high and the frequency could be excessively low. The simulation showed that creating an artificial additional fluctuation in the control signal makes possible to provide a reduction in the amplitude and the resulting increase in the frequency of oscillation near to the prescribed value. This should be evaluated as a way to improve the quality of automated control with the helps of human being. The paper presents some practical examples of the examined method.

2017-12-20
Rebaï, S. Bezzaoucha, Voos, H., Darouach, M..  2017.  A contribution to cyber-security of networked control systems: An event-based control approach. 2017 3rd International Conference on Event-Based Control, Communication and Signal Processing (EBCCSP). :1–7.
In the present paper, a networked control system under both cyber and physical attacks Is considered. An adapted formulation of the problem under physical attacks, data deception and false data injection attacks, is used for controller synthesis. Based on the classical fault tolerant detection (FTD) tools, a residual generator for attack/fault detection based on observers is proposed. An event-triggered and Bilinear Matrix Inequality (BMI) implementation is proposed in order to achieve novel and better security strategy. The purpose in using this implementation would be to reduce (limit) the total number of transmissions to only instances when the networked control system (NCS) needs attention. It is important to note that the main contribution of this paper is to establish the adequate event-triggered and BMI-based methodology so that the particular structure of the mixed attacked/faulty structure can be re-formulated within the classical FTD paradigm. Experimental results are given to illustrate the developed approach efficiency on a pilot three-tank system. The plant model is presented and the proposed control design is applied to the system.
2015-04-30
Chia-Feng Juang, Chi-Wei Hung, Chia-Hung Hsu.  2014.  Rule-Based Cooperative Continuous Ant Colony Optimization to Improve the Accuracy of Fuzzy System Design. Fuzzy Systems, IEEE Transactions on. 22:723-735.

This paper proposes a cooperative continuous ant colony optimization (CCACO) algorithm and applies it to address the accuracy-oriented fuzzy systems (FSs) design problems. All of the free parameters in a zero- or first-order Takagi-Sugeno-Kang (TSK) FS are optimized through CCACO. The CCACO algorithm performs optimization through multiple ant colonies, where each ant colony is only responsible for optimizing the free parameters in a single fuzzy rule. The ant colonies cooperate to design a complete FS, with a complete parameter solution vector (encoding a complete FS) that is formed by selecting a subsolution component (encoding a single fuzzy rule) from each colony. Subsolutions in each ant colony are evolved independently using a new continuous ant colony optimization algorithm. In the CCACO, solutions are updated via the techniques of pheromone-based tournament ant path selection, ant wandering operation, and best-ant-attraction refinement. The performance of the CCACO is verified through applications to fuzzy controller and predictor design problems. Comparisons with other population-based optimization algorithms verify the superiority of the CCACO.

Fawzi, H., Tabuada, P., Diggavi, S..  2014.  Secure Estimation and Control for Cyber-Physical Systems Under Adversarial Attacks. Automatic Control, IEEE Transactions on. 59:1454-1467.

The vast majority of today's critical infrastructure is supported by numerous feedback control loops and an attack on these control loops can have disastrous consequences. This is a major concern since modern control systems are becoming large and decentralized and thus more vulnerable to attacks. This paper is concerned with the estimation and control of linear systems when some of the sensors or actuators are corrupted by an attacker. We give a new simple characterization of the maximum number of attacks that can be detected and corrected as a function of the pair (A,C) of the system and we show in particular that it is impossible to accurately reconstruct the state of a system if more than half the sensors are attacked. In addition, we show how the design of a secure local control loop can improve the resilience of the system. When the number of attacks is smaller than a threshold, we propose an efficient algorithm inspired from techniques in compressed sensing to estimate the state of the plant despite attacks. We give a theoretical characterization of the performance of this algorithm and we show on numerical simulations that the method is promising and allows to reconstruct the state accurately despite attacks. Finally, we consider the problem of designing output-feedback controllers that stabilize the system despite sensor attacks. We show that a principle of separation between estimation and control holds and that the design of resilient output feedback controllers can be reduced to the design of resilient state estimators.

Li Yumei, Voos, H., Darouach, M..  2014.  Robust H #x221E; cyber-attacks estimation for control systems. Control Conference (CCC), 2014 33rd Chinese. :3124-3129.

This paper deals with the robust H∞ cyber-attacks estimation problem for control systems under stochastic cyber-attacks and disturbances. The focus is on designing a H∞ filter which maximize the attack sensitivity and minimize the effect of disturbances. The design requires not only the disturbance attenuation, but also the residual to remain the attack sensitivity as much as possible while the effect of disturbance is minimized. A stochastic model of control system with stochastic cyber-attacks which satisfy the Markovian stochastic process is constructed. And we also present the stochastic attack models that a control system is possibly exposed to. Furthermore, applying H∞ filtering technique-based on linear matrix inequalities (LMIs), the paper obtains sufficient conditions that ensure the filtering error dynamic is asymptotically stable and satisfies a prescribed ratio between cyber-attack sensitivity and disturbance sensitivity. Finally, the results are applied to the control of a Quadruple-tank process (QTP) under a stochastic cyber-attack and a stochastic disturbance. The simulation results underline that the designed filters is effective and feasible in practical application.