Visible to the public Biblio

Filters: Keyword is CMOS analogue integrated circuits  [Clear All Filters]
2018-06-11
Coustans, M., Terrier, C., Eberhardt, T., Salgado, S., Cherkaoui, A., Fesquet, L..  2017.  A subthreshold 30pJ/bit self-timed ring based true random number generator for internet of everything. 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). :1–3.

This paper presents a true random number generator that exploits the subthreshold properties of jitter of events propagating in a self-timed ring and jitter of events propagating in an inverter based ring oscillator. Design was implemented in 180nm CMOS flash process. Devices provide high quality random bit sequences passing FIPS 140-2 and NIST SP 800-22 statistical tests which guaranty uniform distribution and unpredictability thanks to the physics based entropy source.

Armstrong, D., Nasri, B., Karri, R., Shahrjerdi, D..  2017.  Hybrid silicon CMOS-carbon nanotube physically unclonable functions. 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). :1–3.

Physically unclonable functions (PUFs) are used to uniquely identify electronic devices. Here, we introduce a hybrid silicon CMOS-nanotube PUF circuit that uses the variations of nanotube transistors to generate a random response. An analog silicon circuit subsequently converts the nanotube response to zero or one bits. We fabricate an array of nanotube transistors to study and model their device variability. The behavior of the hybrid CMOS-nanotube PUF is then simulated. The parameters of the analog circuit are tuned to achieve the desired normalized Hamming inter-distance of 0.5. The co-design of the nanotube array and the silicon CMOS is an attractive feature for increasing the immunity of the hybrid PUF against an unauthorized duplication. The heterogeneous integration of nanotubes with silicon CMOS offers a new strategy for realizing security tokens that are strong, low-cost, and reliable.

2018-02-21
Bellizia, D., Scotti, G., Trifiletti, A..  2017.  Fully integrable current-mode feedback suppressor as an analog countermeasure against CPA attacks in 40nm CMOS technology. 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME). :349–352.

Security of sensible data for ultraconstrained IoT smart devices is one of the most challenging task in modern design. The needs of CPA-resistant cryptographic devices has to deal with the demanding requirements of small area and small impact on the overall power consumption. In this work, a novel current-mode feedback suppressor as on-chip analog-level CPA countermeasure is proposed. It aims to suppress differences in power consumption due to data-dependency of CMOS cryptographic devices, in order to counteract CPA attacks. The novel countermeasure is able to improve MTD of unprotected CMOS implementation of at least three orders of magnitude, providing a ×1.1 area and ×1.7 power overhead.

2017-04-20
Takalo, H., Ahmadi, A., Mirhassani, M., Ahmadi, M..  2016.  Analog cellular neural network for application in physical unclonable functions. 2016 IEEE International Symposium on Circuits and Systems (ISCAS). :2635–2638.
In this paper an analog cellular neural network is proposed with application in physical unclonable function design. Dynamical behavior of the circuit and its high sensitivity to the process variation can be exploited in a challenge-response security system. The proposed circuit can be used as unclonable core module in the secure systems for applications such as device identification/authentication and secret key generation. The proposed circuit is designed and simulated in 45-nm bulk CMOS technology. Monte Carlo simulation for this circuit, results in unpolarized Gaussian-shaped distribution for Hamming Distance between 4005 100-bit PUF instances.