Biblio
A new framework is presented in this paper for proving coding theorems for linear codes, where the systematic bits and the corresponding parity-check bits play different roles. Precisely, the noisy systematic bits are used to limit the list size of typical codewords, while the noisy parity-check bits are used to select from the list the maximum likelihood codeword. This new framework for linear codes allows that the systematic bits and the parity-check bits are transmitted in different ways and over different channels. In particular, this new framework unifies the source coding theorems and the channel coding theorems. With this framework, we prove that the Bernoulli generator matrix codes (BGMCs) are capacity-achieving over binary-input output symmetric (BIOS) channels and also entropy-achieving for Bernoulli sources.
ISSN: 2157-8117
Statistical structure learning (SSL)-based approaches have been employed in the recent years to detect different types of anomalies in a variety of cyber-physical systems (CPS). Although these approaches outperform conventional methods in the literature, their computational complexity, need for large number of measurements and centralized computations have limited their applicability to large-scale networks. In this work, we propose a distributed, multi-agent maximum likelihood (ML) approach to detect anomalies in smart grid applications aiming at reducing computational complexity, as well as preserving data privacy among different players in the network. The proposed multi-agent detector breaks the original ML problem into several local (smaller) ML optimization problems coupled by the alternating direction method of multipliers (ADMM). Then, these local ML problems are solved by their corresponding agents, eventually resulting in the construction of the global solution (network's information matrix). The numerical results obtained from two IEEE test (power transmission) systems confirm the accuracy and efficiency of the proposed approach for anomaly detection.
In this paper, we propose a compositional scheme for the construction of abstractions for networks of control systems by using the interconnection matrix and joint dissipativity-type properties of subsystems and their abstractions. In the proposed framework, the abstraction, itself a control system (possibly with a lower dimension), can be used as a substitution of the original system in the controller design process. Moreover, we provide a procedure for constructing abstractions of a class of nonlinear control systems by using the bounds on the slope of system nonlinearities. We illustrate the proposed results on a network of linear control systems by constructing its abstraction in a compositional way without requiring any condition on the number or gains of the subsystems. We use the abstraction as a substitute to synthesize a controller enforcing a certain linear temporal logic specification. This example particularly elucidates the effectiveness of dissipativity-type compositional reasoning for large-scale systems.
Self-assembled semiconductor quantum dots possess an intrinsic geometric symmetry due to the crystal periodic structure. In order to systematically analyze the symmetric properties of quantum dots' bound states resulting only from geometric confinement, we apply group representation theory. We label each bound state for two kinds of popular quantum dot shapes: pyramid and half ellipsoid with the irreducible representation of the corresponding symmetric groups, i.e., C4v and C2v, respectively. Our study completes all the possible irreducible representation cases of groups C4v and C2v. Using the character theory of point groups, we predict the selection rule for electric dipole induced transitions. We also investigate the impact of quantum dot aspect ratio on the symmetric properties of the state wavefunction. This research provides a solid foundation to continue exploring quantum dot symmetry reduction or broken phenomena because of strain, band-mixing and shape irregularity. The results will benefit the researchers who are interested in quantum dot symmetry related effects such as absorption or emission spectra, or those who are studying quantum dots using analytical or numerical simulation approaches.
In Vehicular networks, privacy, especially the vehicles' location privacy is highly concerned. Several pseudonymous based privacy protection mechanisms have been established and standardized in the past few years by IEEE and ETSI. However, vehicular networks are still vulnerable to Sybil attack. In this paper, a Sybil attack detection method based on k-Nearest Neighbours (kNN) classification algorithm is proposed. In this method, vehicles are classified based on the similarity in their driving patterns. Furthermore, the kNN methods' high runtime complexity issue is also optimized. The simulation results show that our detection method can reach a high detection rate while keeping error rate low.
This paper deals with the robust H∞ cyber-attacks estimation problem for control systems under stochastic cyber-attacks and disturbances. The focus is on designing a H∞ filter which maximize the attack sensitivity and minimize the effect of disturbances. The design requires not only the disturbance attenuation, but also the residual to remain the attack sensitivity as much as possible while the effect of disturbance is minimized. A stochastic model of control system with stochastic cyber-attacks which satisfy the Markovian stochastic process is constructed. And we also present the stochastic attack models that a control system is possibly exposed to. Furthermore, applying H∞ filtering technique-based on linear matrix inequalities (LMIs), the paper obtains sufficient conditions that ensure the filtering error dynamic is asymptotically stable and satisfies a prescribed ratio between cyber-attack sensitivity and disturbance sensitivity. Finally, the results are applied to the control of a Quadruple-tank process (QTP) under a stochastic cyber-attack and a stochastic disturbance. The simulation results underline that the designed filters is effective and feasible in practical application.