Biblio
Tor provides low-latency anonymous and uncensored network access against a local or network adversary. Due to the design choice to minimize traffic overhead (and increase the pool of potential users) Tor allows some information about the client's connections to leak. Attacks using (features extracted from) this information to infer the website a user visits are called Website Fingerprinting (WF) attacks. We develop a methodology and tools to measure the amount of leaked information about a website. We apply this tool to a comprehensive set of features extracted from a large set of websites and WF defense mechanisms, allowing us to make more fine-grained observations about WF attacks and defenses.
Privacy enhancing technologies (PETs) are ubiquitous nowadays. They are beneficial for a wide range of users. However, PETs are not always used for legal activity. The present paper is focused on Tor users deanonimization1 using out-of-the box technologies and a basic machine learning algorithm. The aim of the work is to show that it is possible to deanonimize a small fraction of users without having a lot of resources and state-of-the-art machine learning techniques. The deanonimization is a very important task from the point of view of national security. To address this issue, we are using a website fingerprinting attack.
The browsing behavior of a user allows to infer personal details, such as health status, political interests, sexual orientation, etc. In order to protect this sensitive information and to cope with possible privacy threats, defense mechanisms like SSH tunnels and anonymity networks (e.g., Tor) have been established. A known shortcoming of these defenses is that website fingerprinting attacks allow to infer a user's browsing behavior based on traffic analysis techniques. However, website fingerprinting typically assumes access to the client's network or to a router near the client, which restricts the applicability of these attacks. In this work, we show that this rather strong assumption is not required for website fingerprinting attacks. Our client-side attack overcomes several limitations and assumptions of network-based fingerprinting attacks, e.g., network conditions and traffic noise, disabled browser caches, expensive training phases, etc. Thereby, we eliminate assumptions used for academic purposes and present a practical attack that can be implemented easily and deployed on a large scale. Eventually, we show that an unprivileged application can infer the browsing behavior by exploiting the unprotected access to the Android data-usage statistics. More specifically, we are able to infer 97% of 2,500 page visits out of a set of 500 monitored pages correctly. Even if the traffic is routed through Tor by using the Orbot proxy in combination with the Orweb browser, we can infer 95% of 500 page visits out of a set of 100 monitored pages correctly. Thus, the READ\_HISTORY\_BOOKMARKS permission, which is supposed to protect the browsing behavior, does not provide protection.