Biblio
Distributed Denial-of-Service (DDoS) attacks have steadily gained in popularity over the last decade, their intensity ranging from mere nuisance to severe. The increased number of attacks, combined with the loss of revenue for the targets, has given rise to a market for DDoS Protection Service (DPS) providers, to whom victims can outsource the cleansing of their traffic by using traffic diversion. In this paper, we investigate the adoption of cloud-based DPSs worldwide. We focus on nine leading providers. Our outlook on adoption is made on the basis of active DNS measurements. We introduce a methodology that allows us, for a given domain name, to determine if traffic diversion to a DPS is in effect. It also allows us to distinguish various methods of traffic diversion and protection. For our analysis we use a long-term, large-scale data set that covers well over 50\textbackslash% of all names in the global domain namespace, in daily snapshots, over a period of 1.5 years. Our results show that DPS adoption has grown by 1.24x in our measurement period, a prominent trend compared to the overall expansion of the namespace. Our study also reveals that adoption is often lead by big players such as large Web hosters, which activate or deactivate DDoS protection for millions of domain names at once.
The image and multimedia data produced by individuals and enterprises is increasing every day. Motivated by the advances in cloud computing, there is a growing need to outsource such computational intensive image feature detection tasks to cloud for its economic computing resources and on-demand ubiquitous access. However, the concerns over the effective protection of private image and multimedia data when outsourcing it to cloud platform become the major barrier that impedes the further implementation of cloud computing techniques over massive amount of image and multimedia data. To address this fundamental challenge, we study the state-of-the-art image feature detection algorithms and focus on Scalar Invariant Feature Transform (SIFT), which is one of the most important local feature detection algorithms and has been broadly employed in different areas, including object recognition, image matching, robotic mapping, and so on. We analyze and model the privacy requirements in outsourcing SIFT computation and propose Secure Scalar Invariant Feature Transform (SecSIFT), a high-performance privacy-preserving SIFT feature detection system. In contrast to previous works, the proposed design is not restricted by the efficiency limitations of current homomorphic encryption scheme. In our design, we decompose and distribute the computation procedures of the original SIFT algorithm to a set of independent, co-operative cloud servers and keep the outsourced computation procedures as simple as possible to avoid utilizing a computationally expensive homomorphic encryption scheme. The proposed SecSIFT enables implementation with practical computation and communication complexity. Extensive experimental results demonstrate that SecSIFT performs comparably to original SIFT on image benchmarks while capable of preserving the privacy in an efficient way.
Data intensive computing research and technology developments offer the potential of providing significant improvements in several security log management challenges. Approaches to address the complexity, timeliness, expense, diversity, and noise issues have been identified. These improvements are motivated by the increasingly important role of analytics. Machine learning and expert systems that incorporate attack patterns are providing greater detection insights. Finding actionable indicators requires the analysis to combine security event log data with other network data such and access control lists, making the big-data problem even bigger. Automation of threat intelligence is recognized as not complete with limited adoption of standards. With limited progress in anomaly signature detection, movement towards using expert systems has been identified as the path forward. Techniques focus on matching behaviors of attackers to patterns of abnormal activity in the network. The need to stream, parse, and analyze large volumes of small, semi-structured data files can be feasibly addressed through a variety of techniques identified by researchers. This report highlights research in key areas, including protection of the data, performance of the systems and network bandwidth utilization.
The usual approach to security for cloud-hosted applications is strong separation. However, it is often the case that the same data is used by different applications, particularly given the increase in data-driven (`big data' and IoT) applications. We argue that access control for the cloud should no longer be application-specific but should be data-centric, associated with the data that can flow between applications. Indeed, the data may originate outside cloud services from diverse sources such as medical monitoring, environmental sensing etc. Information Flow Control (IFC) potentially offers data-centric, system-wide data access control. It has been shown that IFC can be provided at operating system level as part of a PaaS offering, with an acceptable overhead. In this paper we consider how IFC can be integrated with application-specific access control, transparently from application developers, while building from simple IFC primitives, access control policies that align with the data management obligations of cloud providers and tenants.
We present a novel Cyber Security analytics framework. We demonstrate a comprehensive cyber security monitoring system to construct cyber security correlated events with feature selection to anticipate behaviour based on various sensors.
The massive amount of data that is being collected by today's society has the potential to advance scientific knowledge and boost innovations. However, people often lack sufficient computing resources to analyze their large-scale data in a cost-effective and timely way. Cloud computing offers access to vast computing resources on an on-demand and pay-per-use basis, which is a practical way for people to analyze their huge data sets. However, since their data contain sensitive information that needs to be kept secret for ethical, security, or legal reasons, many people are reluctant to adopt cloud computing. For the first time in the literature, we propose a secure outsourcing algorithm for large-scale quadratic programs (QPs), which is one of the most fundamental problems in data analysis. Specifically, based on simple linear algebra operations, we design a low-complexity QP transformation that protects the private data in a QP. We show that the transformed QP is computationally indistinguishable under a chosen plaintext attack (CPA), i.e., CPA-secure. We then develop a parallel algorithm to solve the transformed QP at the cloud, and efficiently find the solution to the original QP at the user. We implement the proposed algorithm on the Amazon Elastic Compute Cloud (EC2) and a laptop. We find that our proposed algorithm offers significant time savings for the user and is scalable to the size of the QP.
The dramatically growing demand of Cyber Physical and Social Computing (CPSC) has enabled a variety of novel channels to reach services in the financial industry. Combining cloud systems with multimedia big data is a novel approach for Financial Service Institutions (FSIs) to diversify service offerings in an efficient manner. However, the security issue is still a great issue in which the service availability often conflicts with the security constraints when the service media channels are varied. This paper focuses on this problem and proposes a novel approach using the Semantic-Based Access Control (SBAC) techniques for acquiring secure financial services on multimedia big data in cloud computing. The proposed approach is entitled IntercroSsed Secure Big Multimedia Model (2SBM), which is designed to secure accesses between various media through the multiple cloud platforms. The main algorithms supporting the proposed model include the Ontology-Based Access Recognition (OBAR) Algorithm and the Semantic Information Matching (SIM) Algorithm. We implement an experimental evaluation to prove the correctness and adoptability of our proposed scheme.
Multimedia has been exponentially increasing as the biggest big data, which consist of video clips, images, and audio files. Processing and analyzing them on a cloud data center have become a preferred solution that can utilize the large pool of cloud resources to address the problems caused by the tremendous amount of unstructured multimedia data. However, there exist many challenges in processing multimedia big data on a cloud data center, such as multimedia data representation approach, an efficient networking model, and an estimation method for traffic patterns. The primary purpose of this article is to develop a novel tensor-based software-defined networking model on a cloud data center for multimedia big-data computation and communication. First, an overview of the proposed framework is provided, in which the functions of the representative modules are briefly illustrated. Then, three models,—forwarding tensor, control tensor, and transition tensor—are proposed for management of networking devices and prediction of network traffic patterns. Finally, two algorithms about single-mode and multimode tensor eigen-decomposition are developed, and the incremental method is employed for efficiently updating the generated eigen-vector and eigen-tensor. Experimental results reveal that the proposed framework is feasible and efficient to handle multimedia big data on a cloud data center.
- « first
- ‹ previous
- 1
- 2
- 3