Biblio
The problems of random numbers application to the information security of data, communication lines, computer units and automated driving systems are considered. The possibilities for making up quantum generators of random numbers and existing solutions for acquiring of sufficiently random sequences are analyzed. The authors found out the method for the creation of quantum generators on the basis of semiconductor electronic components. The electron-quantum generator based on electrons tunneling is experimentally demonstrated. It is shown that it is able to create random sequences of high security level and satisfying known NIST statistical tests (P-Value\textbackslashtextgreater0.9). The generator created can be used for formation of both closed and open cryptographic keys in computer systems and other platforms and has great potential for realization of random walks and probabilistic computing on the basis of neural nets and other IT problems.
Blum-Blum-Shub (BBS) is a less complex pseudorandom number generator (PRNG) that requires very large modulus and a squaring operation for the generation of each bit, which makes it computationally heavy and slow. On the other hand, the concept of elliptic curve (EC) point operations has been extended to PRNGs that prove to have good randomness properties and reduced latency, but exhibit dependence on the secrecy of point P. Given these pros and cons, this paper proposes a new BBS-ECPRNG approach such that the modulus is the product of two elliptic curve points, both primes of length, and the number of bits extracted per iteration is by binary fraction. We evaluate the algorithm performance by generating 1000 distinct sequences of 106bits each. The results were analyzed based on the overall performance of the sequences using the NIST standard statistical test suite. The average performance of the sequences was observed to be above the minimum confidence level of 99.7 percent and successfully passed all the statistical properties of randomness tests.
This paper presents a true random number generator that exploits the subthreshold properties of jitter of events propagating in a self-timed ring and jitter of events propagating in an inverter based ring oscillator. Design was implemented in 180nm CMOS flash process. Devices provide high quality random bit sequences passing FIPS 140-2 and NIST SP 800-22 statistical tests which guaranty uniform distribution and unpredictability thanks to the physics based entropy source.
This presents a new model to support empirical failure probability estimation for a software-intensive system. The new element of the approach is that it combines the results of testing using a simulated hardware platform with results from testing on the real platform. This approach addresses a serious practical limitation of a technique known as statistical testing. This limitation will be called the test time expansion problem (or simply the 'time problem'), which is that the amount of testing required to demonstrate useful levels of reliability over a time period T is many orders of magnitude greater than T. The time problem arises whether the aim is to demonstrate ultra-high reliability levels for protection system, or to demonstrate any (desirable) reliability levels for continuous operation ('high demand') systems. Specifically, the theoretical feasibility of a platform simulation approach is considered since, if this is not proven, questions of practical implementation are moot. Subject to the assumptions made in the paper, theoretical feasibility is demonstrated.
In this paper a random number generation method based on a piecewise linear one dimensional (PL1D) discrete time chaotic maps is proposed for applications in cryptography and steganography. Appropriate parameters are determined by examining the distribution of underlying chaotic signal and random number generator (RNG) is numerically verified by four fundamental statistical test of FIPS 140-2. Proposed design is practically realized on the field programmable analog and digital arrays (FPAA-FPGA). Finally it is experimentally verified that the presented RNG fulfills the NIST 800-22 randomness test without post processing.
The paper considers the general structure of Pseudo-random binary sequence generator based on the numerical solution of chaotic differential equations. The proposed generator architecture divides the generation process in two stages: numerical simulation of the chaotic system and converting the resulting sequence to a binary form. The new method of calculation of normalization factor is applied to the conversion of state variables values to the binary sequence. Numerical solution of chaotic ODEs is implemented using semi-implicit symmetric composition D-method. Experimental study considers Thomas and Rössler attractors as test chaotic systems. Properties verification for the output sequences of generators is carried out using correlation analysis methods and NIST statistical test suite. It is shown that output sequences of investigated generators have statistical and correlation characteristics that are specific for the random sequences. The obtained results can be used in cryptography applications as well as in secure communication systems design.
Modeling and evaluating the performance of large-scale wireless sensor networks (WSNs) is a challenging problem. The traditional method for representing the global state of a system as a cross product of the states of individual nodes in the system results in a state space whose size is exponential in the number of nodes. We propose an alternative way of representing the global state of a system: namely, as a probability mass function (pmf) which represents the fraction of nodes in different states. A pmf corresponds to a point in a Euclidean space of possible pmf values, and the evolution of the state of a system is represented by trajectories in this Euclidean space. We propose a novel performance evaluation method that examines all pmf trajectories in a dense Euclidean space by exploring only finite relevant portions of the space. We call our method Euclidean model checking. Euclidean model checking is useful both in the design phase—where it can help determine system parameters based on a specification—and in the evaluation phase—where it can help verify performance properties of a system. We illustrate the utility of Euclidean model checking by using it to design a time difference of arrival (TDoA) distance measurement protocol and to evaluate the protocol’s implementation on a 90-node WSN. To facilitate such performance evaluations, we provide a Markov model estimation method based on applying a standard statistical estimation technique to samples resulting from the execution of a system.
Sybil attack poses a serious threat to geographic routing. In this attack, a malicious node attempts to broadcast incorrect location information, identity and secret key information. A Sybil node can tamper its neighboring nodes for the purpose of converting them as malicious. As the amount of Sybil nodes increase in the network, the network traffic will seriously affect and the data packets will never reach to their destinations. To address this problem, researchers have proposed several schemes to detect Sybil attacks. However, most of these schemes assume costly setup such as the use of relay nodes or use of expensive devices and expensive encryption methods to verify the location information. In this paper, the authors present a method to detect Sybil attacks using Sequential Hypothesis Testing. The proposed method has been examined using a Greedy Perimeter Stateless Routing (GPSR) protocol with analysis and simulation. The simulation results demonstrate that the proposed method is robust against detecting Sybil attacks.
Sybil attack poses a serious threat to geographic routing. In this attack, a malicious node attempts to broadcast incorrect location information, identity and secret key information. A Sybil node can tamper its neighboring nodes for the purpose of converting them as malicious. As the amount of Sybil nodes increase in the network, the network traffic will seriously affect and the data packets will never reach to their destinations. To address this problem, researchers have proposed several schemes to detect Sybil attacks. However, most of these schemes assume costly setup such as the use of relay nodes or use of expensive devices and expensive encryption methods to verify the location information. In this paper, the authors present a method to detect Sybil attacks using Sequential Hypothesis Testing. The proposed method has been examined using a Greedy Perimeter Stateless Routing (GPSR) protocol with analysis and simulation. The simulation results demonstrate that the proposed method is robust against detecting Sybil attacks.