Visible to the public Biblio

Filters: Keyword is censorship circumvention  [Clear All Filters]
2019-12-16
Wang, Kuang-Ching, Brooks, Richard R., Barrineau, Geddings, Oakley, Jonathan, Yu, Lu, Wang, Qing.  2018.  Internet Security Liberated via Software Defined Exchanges. Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :19–22.
With software defined networking and network function virtualization technologies, networks can be programmed to have customized processing and paths for different traffic at manageable costs and for massive numbers of applications. Now, picture a future Internet where each entity - a person, an organization, or an autonomous system - has the ability to choose how traffic in their respective network sessions is routed and processed between itself and its counterparts. The network is, essentially, liberated from today's homogeneous IP-based routing and limited connection options. To realize such a network paradigm, we propose a software defined exchange architecture that can provide the needed network programmability, session-level customization, and scale. We present a case study for traffic-analysis-resistant communication among individuals, campuses, or web services, where IP addresses no longer need to have a one-to-one correspondence with service providers.
2018-09-28
Hartl, Alexander, Annessi, Robert, Zseby, Tanja.  2017.  A Subliminal Channel in EdDSA: Information Leakage with High-Speed Signatures. Proceedings of the 2017 International Workshop on Managing Insider Security Threats. :67–78.
Subliminal channels in digital signatures provide a very effective method to clandestinely leak information from inside a system to a third party outside. Information can be hidden in signature parameters in a way that both network operators and legitimate receivers would not notice any suspicious traces. Subliminal channels have previously been discovered in other signatures, such as ElGamal and ECDSA. Those signatures are usually just sparsely exchanged in network protocols, e.g. during authentication, and their usability for leaking information is therefore limited. With the advent of high-speed signatures such as EdDSA, however, scenarios become feasible where numerous packets with individual signatures are transferred between communicating parties. This significantly increases the bandwidth for transmitting subliminal information. Examples are broadcast clock synchronization or signed sensor data export. A subliminal channel in signatures appended to numerous packets allows the transmission of a high amount of hidden information, suitable for large scale data exfiltration or even the operation of command and control structures. In this paper, we show the existence of a broadband subliminal channel in the EdDSA signature scheme. We then discuss the implications of the subliminal channel in practice using thee different scenarios: broadcast clock synchronization, signed sensor data export, and classic TLS. We perform several experiments to show the use of the subliminal channel and measure the actual bandwidth of the subliminal information that can be leaked. We then discuss the applicability of different countermeasures against subliminal channels from other signature schemes to EdDSA but conclude that none of the existing solutions can sufficiently protect against data exfiltration in network protocols secured by EdDSA.
2018-05-09
Nasr, Milad, Zolfaghari, Hadi, Houmansadr, Amir.  2017.  The Waterfall of Liberty: Decoy Routing Circumvention That Resists Routing Attacks. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2037–2052.

Decoy routing is an emerging approach for censorship circumvention in which circumvention is implemented with help from a number of volunteer Internet autonomous systems, called decoy ASes. Recent studies on decoy routing consider all decoy routing systems to be susceptible to a fundamental attack – regardless of their specific designs–in which the censors re-route traffic around decoy ASes, thereby preventing censored users from using such systems. In this paper, we propose a new architecture for decoy routing that, by design, is significantly stronger to rerouting attacks compared to all previous designs. Unlike previous designs, our new architecture operates decoy routers only on the downstream traffic of the censored users; therefore we call it downstream-only decoy routing. As we demonstrate through Internet-scale BGP simulations, downstream-only decoy routing offers significantly stronger resistance to rerouting attacks, which is intuitively because a (censoring) ISP has much less control on the downstream BGP routes of its traffic. Designing a downstream-only decoy routing system is a challenging engineering problem since decoy routers do not intercept the upstream traffic of censored users. We design the first downstream-only decoy routing system, called Waterfall, by devising unique covert communication mechanisms. We also use various techniques to make our Waterfall implementation resistant to traffic analysis attacks. We believe that downstream-only decoy routing is a significant step towards making decoy routing systems practical. This is because a downstream-only decoy routing system can be deployed using a significantly smaller number of volunteer ASes, given a target resistance to rerouting attacks. For instance, we show that a Waterfall implementation with only a single decoy AS is as resistant to routing attacks (against China) as a traditional decoy system (e.g., Telex) with 53 decoy ASes.

2017-05-16
Kohls, Katharina, Holz, Thorsten, Kolossa, Dorothea, Pöpper, Christina.  2016.  SkypeLine: Robust Hidden Data Transmission for VoIP. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :877–888.

Internet censorship is used in many parts of the world to prohibit free access to online information. Different techniques such as IP address or URL blocking, DNS hijacking, or deep packet inspection are used to block access to specific content on the Internet. In response, several censorship circumvention systems were proposed that attempt to bypass existing filters. Especially systems that hide the communication in different types of cover protocols attracted a lot of attention. However, recent research results suggest that this kind of covert traffic can be easily detected by censors. In this paper, we present SkypeLine, a censorship circumvention system that leverages Direct-Sequence Spread Spectrum (DSSS) based steganography to hide information in Voice-over-IP (VoIP) communication. SkypeLine introduces two novel modulation techniques that hide data by modulating information bits on the voice carrier signal using pseudo-random, orthogonal noise sequences and repeating the spreading operation several times. Our design goals focus on undetectability in presence of a strong adversary and improved data rates. As a result, the hiding is inconspicuous, does not alter the statistical characteristics of the carrier signal, and is robust against alterations of the transmitted packets. We demonstrate the performance of SkypeLine based on two simulation studies that cover the theoretical performance and robustness. Our measurements demonstrate that the data rates achieved with our techniques substantially exceed existing DSSS approaches. Furthermore, we prove the real-world applicability of the presented system with an exemplary prototype for Skype.