Visible to the public Biblio

Filters: Keyword is DPI  [Clear All Filters]
2022-04-25
Rescio, Tommaso, Favale, Thomas, Soro, Francesca, Mellia, Marco, Drago, Idilio.  2021.  DPI Solutions in Practice: Benchmark and Comparison. 2021 IEEE Security and Privacy Workshops (SPW). :37–42.
Having a clear insight on the protocols carrying traffic is crucial for network applications. Deep Packet Inspection (DPI) has been a key technique to provide visibility into traffic. DPI has proven effective in various scenarios, and indeed several open source DPI solutions are maintained by the community. Yet, these solutions provide different classifications, and it is hard to establish a common ground truth. Independent works approaching the question of the quality of DPI are already aged and rely on limited datasets. Here, we test if open source DPI solutions can provide useful information in practical scenarios, e.g., supporting security applications. We provide an evaluation of the performance of four open-source DPI solutions, namely nDPI, Libprotoident, Tstat and Zeek. We use datasets covering various traffic scenarios, including operational networks, IoT scenarios and malware. As no ground truth is available, we study the consistency of classification across the solutions, investigating rootcauses of conflicts. Important for on-line security applications, we check whether DPI solutions provide reliable classification with a limited number of packets per flow. All in all, we confirm that DPI solutions still perform satisfactorily for well-known protocols. They however struggle with some P2P traffic and security scenarios (e.g., with malware traffic). All tested solutions reach a final classification after observing few packets with payload, showing adequacy for on-line applications.
2021-12-21
Jeong, Jang Hyeon, Kim, Jong Beom, Choi, Seong Gon.  2021.  Zero-Day Attack Packet Highlighting System. 2021 23rd International Conference on Advanced Communication Technology (ICACT). :200–204.
This paper presents Zero-Day Attack Packet Highlighting System. Proposed system outputs zero-day attack packet information from flow extracted as result of regression inspection of packets stored in flow-based PCA. It also highlights raw data of the packet matched with rule. Also, we design communication protocols for sending and receiving data within proposed system. Purpose of the proposed system is to solve existing flow-based problems and provides users with raw data information of zero-day packets so that they can analyze raw data for the packets.
2021-01-11
Bhat, P., Batakurki, M., Chari, M..  2020.  Classifier with Deep Deviation Detection in PoE-IoT Devices. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). :1–3.
With the rapid growth in diversity of PoE-IoT devices and concept of "Edge intelligence", PoE-IoT security and behavior analysis is the major concern. These PoE-IoT devices lack visibility when the entire network infrastructure is taken into account. The IoT devices are prone to have design faults in their security capabilities. The entire network may be put to risk by attacks on vulnerable IoT devices or malware might get introduced into IoT devices even by routine operations such as firmware upgrade. There have been various approaches based on machine learning(ML) to classify PoE-IoT devices based on network traffic characteristics such as Deep Packet Inspection(DPI). In this paper, we propose a novel method for PoE-IoT classification where ML algorithm, Decision Tree is used. In addition to classification, this method provides useful insights to the network deployment, based on the deviations detected. These insights can further be used for shaping policies, troubleshooting and behavior analysis of PoE-IoT devices.
Cheng, Z., Beshley, M., Beshley, H., Kochan, O., Urikova, O..  2020.  Development of Deep Packet Inspection System for Network Traffic Analysis and Intrusion Detection. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :877–881.
One of the most important issues in the development of the Internet of Things (IoT) is network security. The deep packet inspection (DPI) is a promising technology that helps to detection and protection against network attacks. The DPI software system for IoT is developed in this paper. The system for monitoring and analyzing IoT traffic to detect anomalies and identify attacks based on Hurst parameter is proposed. This system makes it possible to determine the Hurst flow parameter at different intervals of observation. This system can be installed on a network provider to use more effectively the bandwidth.
Khandait, P., Hubballi, N., Mazumdar, B..  2020.  Efficient Keyword Matching for Deep Packet Inspection based Network Traffic Classification. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :567–570.
Network traffic classification has a range of applications in network management including QoS and security monitoring. Deep Packet Inspection (DPI) is one of the effective method used for traffic classification. DPI is computationally expensive operation involving string matching between payload and application signatures. Existing traffic classification techniques perform multiple scans of payload to classify the application flows - first scan to extract the words and the second scan to match the words with application signatures. In this paper we propose an approach which can classify network flows with single scan of flow payloads using a heuristic method to achieve a sub-linear search complexity. The idea is to scan few initial bytes of payload and determine potential application signature(s) for subsequent signature matching. We perform experiments with a large dataset containing 171873 network flows and show that it has a good classification accuracy of 98%.
2020-07-03
El-Din Abd El-Raouf, Karim Alaa, Bahaa-Eldin, Ayman M., Sobh, Mohamed A..  2019.  Multipath Traffic Engineering for Software Defined Networking. 2019 14th International Conference on Computer Engineering and Systems (ICCES). :132—136.

ASA systems (firewall, IDS, IPS) are probable to become communication bottlenecks in networks with growing network bandwidths. To alleviate this issue, we suggest to use Application-aware mechanism based on Deep Packet Inspection (DPI) to bypass chosen traffic around firewalls. The services of Internet video sharing gained importance and expanded their share of the multimedia market. The Internet video should meet strict service quality (QoS) criteria to make the broadcasting of broadcast television a viable and comparable level of quality. However, since the Internet video relies on packet communication, it is subject to delays, transmission failures, loss of data and bandwidth restrictions that may have a catastrophic effect on the quality of multimedia.

Yamauchi, Hiroaki, Nakao, Akihiro, Oguchi, Masato, Yamamoto, Shu, Yamaguchi, Saneyasu.  2019.  A Study on Service Identification Based on Server Name Indication Analysis. 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW). :470—474.

Identifying services constituting traffic from given IP network flows is essential to various applications, such as the management of quality of service (QoS) and the prevention of security issues. Typical methods for achieving this objective include identifications based on IP addresses and port numbers. However, such methods are not sufficiently accurate and require improvement. Deep Packet Inspection (DPI) is one of the most promising methods for improving the accuracy of identification. In addition, many current IP flows are encrypted using Transport Layer Security (TLS). Hence, it is necessary for identification methods to analyze flows encrypted by TLS. For that reason, a service identification method based on DPI and n-gram that focuses only on the non-encrypted parts in the TLS session establishment was proposed. However, there is room for improvement in identification accuracy because this method analyzes all the non-encrypted parts including Random Values without protocol analyses. In this paper, we propose a method for identifying the service from given IP flows based on analysis of Server Name Indication (SNI). The proposed method clusters flow according to the value of SNI and identify services from the occurrences of all clusters. Our evaluations, which involve identifications of services on Google and Yahoo sites, demonstrate that the proposed method can identify services more accurately than the existing method.

Yang, Bowen, Liu, Dong.  2019.  Research on Network Traffic Identification based on Machine Learning and Deep Packet Inspection. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1887—1891.

Accurate network traffic identification is an important basis for network traffic monitoring and data analysis, and is the key to improve the quality of user service. In this paper, through the analysis of two network traffic identification methods based on machine learning and deep packet inspection, a network traffic identification method based on machine learning and deep packet inspection is proposed. This method uses deep packet inspection technology to identify most network traffic, reduces the workload that needs to be identified by machine learning method, and deep packet inspection can identify specific application traffic, and improves the accuracy of identification. Machine learning method is used to assist in identifying network traffic with encryption and unknown features, which makes up for the disadvantage of deep packet inspection that can not identify new applications and encrypted traffic. Experiments show that this method can improve the identification rate of network traffic.

2019-12-18
Chugunkov, Ilya V., Fedorov, Leonid O., Achmiz, Bela Sh., Sayfullina, Zarina R..  2018.  Development of the Algorithm for Protection against DDoS-Attacks of Type Pulse Wave. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :292-294.

Protection from DDoS-attacks is one of the most urgent problems in the world of network technologies. And while protect systems has algorithms for detection and preventing DDoS attacks, there are still some unresolved problems. This article is devoted to the DDoS-attack called Pulse Wave. Providing a brief introduction to the world of network technologies and DDoS-attacks, in particular, aims at the algorithm for protecting against DDoS-attack Pulse Wave. The main goal of this article is the implementation of traffic classifier that adds rules for infected computers to put them into a separate queue with limited bandwidth. This approach reduces their load on the service and, thus, firewall neutralises the attack.

2018-09-12
Khazankin, G. R., Komarov, S., Kovalev, D., Barsegyan, A., Likhachev, A..  2017.  System architecture for deep packet inspection in high-speed networks. 2017 Siberian Symposium on Data Science and Engineering (SSDSE). :27–32.

To solve the problems associated with large data volume real-time processing, heterogeneous systems using various computing devices are increasingly used. The characteristic of solving this class of problems is related to the fact that there are two directions for improving methods of real-time data analysis: the first is the development of algorithms and approaches to analysis, and the second is the development of hardware and software. This article reviews the main approaches to the architecture of a hardware-software solution for traffic capture and deep packet inspection (DPI) in data transmission networks with a bandwidth of 80 Gbit/s and higher. At the moment there are software and hardware tools that allow designing the architecture of capture system and deep packet inspection: 1) Using only the central processing unit (CPU); 2) Using only the graphics processing unit (GPU); 3) Using the central processing unit and graphics processing unit simultaneously (CPU + GPU). In this paper, we consider these key approaches. Also attention is paid to both hardware and software requirements for the architecture of solutions. Pain points and remedies are described.

2017-05-16
Su, Jinshu, Chen, Shuhui, Han, Biao, Xu, Chengcheng, Wang, Xin.  2016.  A 60Gbps DPI Prototype Based on Memory-Centric FPGA. Proceedings of the 2016 ACM SIGCOMM Conference. :627–628.

Deep packet inspection (DPI) is widely used in content-aware network applications to detect string features. It is of vital importance to improve the DPI performance due to the ever-increasing link speed. In this demo, we propose a novel DPI architecture with a hierarchy memory structure and parallel matching engines based on memory-centric FPGA. The implemented DPI prototype is able to provide up to 60Gbps full-text string matching throughput and fast rules update speed.

Nirasawa, Shinnosuke, Hara, Masaki, Nakao, Akihiro, Oguchi, Masato, Yamamoto, Shu, Yamaguchi, Saneyasu.  2016.  Network Application Performance Improvement with Deeply Programmable Switch. Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services. :263–267.

Large scale applications in data centers are composed of computers connected with a network. Traditional network switches cannot be flexibly controlled. Then, application developer cannot optimize network elements' behavior for improving application performance. On the other hand, Deeply Programmable Network (DPN) switches can completely analyze packet payloads and be profoundly programmed. In this paper, we focus on processing a part of application functions in network elements for improving application performance based on Deep Packet Inspection (DPI), i.e. analyzing packet payload, using DPN switches. We assume some applications as targets and implement some of functions of applications in network switches. We then present the comparison of performances with and without out method, and show that our method can significantly increase application performance.