Visible to the public Biblio

Filters: Keyword is security by design  [Clear All Filters]
2022-05-20
Sion, Laurens, Van Landuyt, Dimitri, Yskout, Koen, Verreydt, Stef, Joosen, Wouter.  2021.  Automated Threat Analysis and Management in a Continuous Integration Pipeline. 2021 IEEE Secure Development Conference (SecDev). :30–37.
Security and privacy threat modeling is commonly applied to systematically identify and address design-level security and privacy concerns in the early stages of architecture and design. Identifying and resolving these threats should remain a continuous concern during the development lifecycle. Especially with contemporary agile development practices, a single-shot upfront analysis becomes quickly outdated. Despite it being explicitly recommended by experts, existing threat modeling approaches focus largely on early development phases and provide limited support during later implementation phases.In this paper, we present an integrated threat analysis toolchain to support automated, continuous threat elicitation, assessment, and mitigation as part of a continuous integration pipeline in the GitLab DevOps platform. This type of automation allows for continuous attention to security and privacy threats during development at the level of individual commits, supports monitoring and managing the progress in addressing security and privacy threats over time, and enables more advanced and fine-grained analyses such as assessing the impact of proposed changes in different code branches or merge/pull requests by analyzing the changes to the threat model.
2021-03-29
Aigner, A., Khelil, A..  2020.  An Effective Semantic Security Metric for Industrial Cyber-Physical Systems. 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS). 1:87—92.

The emergence of Industrial Cyber-Physical Systems (ICPS) in today's business world is still steadily progressing to new dimensions. Although they bring many new advantages to business processes and enable automation and a wider range of service capability, they also propose a variety of new challenges. One major challenge, which is introduced by such System-of-Systems (SoS), lies in the security aspect. As security may not have had that significant role in traditional embedded system engineering, a generic way to measure the level of security within an ICPS would provide a significant benefit for system engineers and involved stakeholders. Even though many security metrics and frameworks exist, most of them insufficiently consider an SoS context and the challenges of such environments. Therefore, we aim to define a security metric for ICPS, which measures the level of security during the system design, tests, and integration as well as at runtime. For this, we try to focus on a semantic point of view, which on one hand has not been considered in security metric definitions yet, and on the other hand allows us to handle the complexity of SoS architectures. Furthermore, our approach allows combining the critical characteristics of an ICPS, like uncertainty, required reliability, multi-criticality and safety aspects.

2020-10-12
Eckhart, Matthias, Ekelhart, Andreas, Lüder, Arndt, Biffl, Stefan, Weippl, Edgar.  2019.  Security Development Lifecycle for Cyber-Physical Production Systems. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:3004–3011.

As the connectivity within manufacturing processes increases in light of Industry 4.0, information security becomes a pressing issue for product suppliers, systems integrators, and asset owners. Reaching new heights in digitizing the manufacturing industry also provides more targets for cyber attacks, hence, cyber-physical production systems (CPPSs) must be adequately secured to prevent malicious acts. To achieve a sufficient level of security, proper defense mechanisms must be integrated already early on in the systems' lifecycle and not just eventually in the operation phase. Although standardization efforts exist with the objective of guiding involved stakeholders toward the establishment of a holistic industrial security concept (e.g., IEC 62443), a dedicated security development lifecycle for systems integrators is missing. This represents a major challenge for engineers who lack sufficient information security knowledge, as they may not be able to identify security-related activities that can be performed along the production systems engineering (PSE) process. In this paper, we propose a novel methodology named Security Development Lifecycle for Cyber-Physical Production Systems (SDL-CPPS) that aims to foster security by design for CPPSs, i.e., the engineering of smart production systems with security in mind. More specifically, we derive security-related activities based on (i) security standards and guidelines, and (ii) relevant literature, leading to a security-improved PSE process that can be implemented by systems integrators. Furthermore, this paper informs domain experts on how they can conduct these security-enhancing activities and provides pointers to relevant works that may fill the potential knowledge gap. Finally, we review the proposed approach by means of discussions in a workshop setting with technical managers of an Austrian-based systems integrator to identify barriers to adopting the SDL-CPPS.

2019-10-30
Loruenser, Thomas, Pöhls, Henrich C., Sell, Leon, Laenger, Thomas.  2018.  CryptSDLC: Embedding Cryptographic Engineering into Secure Software Development Lifecycle. Proceedings of the 13th International Conference on Availability, Reliability and Security. :4:1-4:9.

Application development for the cloud is already challenging because of the complexity caused by the ubiquitous, interconnected, and scalable nature of the cloud paradigm. But when modern secure and privacy aware cloud applications require the integration of cryptographic algorithms, developers even need to face additional challenges: An incorrect application may not only lead to a loss of the intended strong security properties but may also open up additional loopholes for potential breaches some time in the near or far future. To avoid these pitfalls and to achieve dependable security and privacy by design, cryptography needs to be systematically designed into the software, and from scratch. We present a system architecture providing a practical abstraction for the many specialists involved in such a development process, plus a suitable cryptographic software development life cycle methodology on top of the architecture. The methodology is complemented with additional tools supporting structured inter–domain communication and thus the generation of consistent results: cloud security and privacy patterns, and modelling of cloud service level agreements. We conclude with an assessment of the use of the Cryptographic Software Design Life Cycle (CryptSDLC) in a EU research project.

2017-11-01
Jasser, Stefanie, Riebisch, Matthias.  2016.  Reusing Security Solutions: A Repository for Architectural Decision Support. Proccedings of the 10th European Conference on Software Architecture Workshops. :40:1–40:7.
Today, the interplay of security design and architecting is still poorly understood and architects lack knowledge about security and architectural security design. Yet, architectural knowledge on security design and its impact on other architectural properties is essential for making right decisions in architecture design. Knowledge is covered within solutions such as architectural patterns, tactics, and tools. Sharing it including the experience other architects gained using these solutions would enable better reuse of security solutions. In this paper, we present a repository for security solutions that supports architectural decisions including quality goal trade-offs. Its metamodel was adapted to special demands of security as a quality goal. The repository supports architecture decisions not only through populating approved solutions but through a recommender system that documents knowledge and experiences of architecture and security experts. We provide a case study to illustrate the repository's features and its application during architecture design.
2017-05-17
Adepu, Sridhar, Mathur, Aditya.  2016.  Distributed Detection of Single-Stage Multipoint Cyber Attacks in a Water Treatment Plant. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :449–460.

A distributed detection method is proposed to detect single stage multi-point (SSMP) attacks on a Cyber Physical System (CPS). Such attacks aim at compromising two or more sensors or actuators at any one stage of a CPS and could totally compromise a controller and prevent it from detecting the attack. However, as demonstrated in this work, using the flow properties of water from one stage to the other, a neighboring controller was found effective in detecting such attacks. The method is based on physical invariants derived for each stage of the CPS from its design. The attack detection effectiveness of the method was evaluated experimentally against an operational water treatment testbed containing 42 sensors and actuators. Results from the experiments point to high effectiveness of the method in detecting a variety of SSMP attacks but also point to its limitations. Distributing the attack detection code among various controllers adds to the scalability of the proposed method.