Biblio
The RFID technology is now widely used and combined with everyday life. RFID Tag is a wireless device used to identify individuals and objects, in fact, it is a combination of the chip and antenna that sends the necessary information to an RFID Reader. On the other hand, an RFID Reader converts received radio waves into digital information and then provides facilities such as sending data to the computer and processing them. Radio frequency identification is a comprehensive processing technology that has led to a revolution in industry and medicine as an alternative to commercial barcodes. RFID Tag is used to tracking commodities and personal assets in the chain stores and even the human body and medical science. However, security and privacy problems have not yet been solved satisfactorily. There are many technical and economic challenges in this direction. In this paper, some of the latest technical research on privacy and security problems has been investigated in radio-frequency identification and security bit method, and it has been shown that in order to achieve this level of individual security, multiple technologies of RFID security development should combine with each other. These solutions should be cheap, efficient, reliable, flexible and long-term.
This paper proposes a novel scheme for RFID anti-counterfeiting by applying bisectional multivariate quadratic equations (BMQE) system into an RF tag data encryption. In the key generation process, arbitrarily choose two matrix sets (denoted as A and B) and a base Rab such that [AB] = λRABT, and generate 2n BMQ polynomials (denoted as p) over finite field Fq. Therefore, (Fq, p) is taken as a public key and (A, B, λ) as a private key. In the encryption process, the EPC code is hashed into a message digest dm. Then dm is padded to d'm which is a non-zero 2n×2n matrix over Fq. With (A, B, λ) and d'm, Sm is formed as an n-vector over F2. Unlike the existing anti-counterfeit scheme, the one we proposed is based on quantum cryptography, thus it is robust enough to resist the existing attacks and has high security.