Visible to the public Biblio

Filters: Keyword is Hardware security and trust  [Clear All Filters]
2018-05-02
Shi, Qihang, Xiao, Kan, Forte, Domenic, Tehranipoor, Mark M..  2017.  Securing Split Manufactured ICs with Wire Lifting Obfuscated Built-In Self-Authentication. Proceedings of the on Great Lakes Symposium on VLSI 2017. :339–344.
Hardware Trojan insertion and intellectual property (IP) theft are two major concerns when dealing with untrusted foundries. Most existing mitigation techniques are limited in protecting against both vulnerabilities. Split manufacturing is designed to stop IP piracy and IC cloning, but it fails at preventing untargeted hardware Trojan insertion and incurs significant overheads when high level of security is demanded. Built-in self-authentication (BISA) is a low cost technique for preventing and detecting hardware Trojan insertion, but is vulnerable to IP piracy, IC cloning or redesign attacks, especially on original circuitry. In this paper, we propose an obfuscated built-in self-authentication (OBISA) technique that combines and optimizes both technique so that they complement and improve security against both vulnerabilities. Performance of the proposed OBISA technique is presented with experimental implementation on same benchmark circuits as used in the existing wire lifting technique. The security performance is evaluated with the most popular split manufacturing security metrics.
2017-05-17
Xiao, K., Forte, D., Jin, Y., Karri, R., Bhunia, S., Tehranipoor, M..  2016.  Hardware Trojans: Lessons Learned After One Decade of Research. ACM Trans. Des. Autom. Electron. Syst.. 22:6:1–6:23.

Given the increasing complexity of modern electronics and the cost of fabrication, entities from around the globe have become more heavily involved in all phases of the electronics supply chain. In this environment, hardware Trojans (i.e., malicious modifications or inclusions made by untrusted third parties) pose major security concerns, especially for those integrated circuits (ICs) and systems used in critical applications and cyber infrastructure. While hardware Trojans have been explored significantly in academia over the last decade, there remains room for improvement. In this article, we examine the research on hardware Trojans from the last decade and attempt to capture the lessons learned. A comprehensive adversarial model taxonomy is introduced and used to examine the current state of the art. Then the past countermeasures and publication trends are categorized based on the adversarial model and topic. Through this analysis, we identify what has been covered and the important problems that are underinvestigated. We also identify the most critical lessons for those new to the field and suggest a roadmap for future hardware Trojan research.