Visible to the public Biblio

Filters: Keyword is Open Source Software  [Clear All Filters]
2018-03-05
Wang, W., Hussein, N., Gupta, A., Wang, Y..  2017.  A Regression Model Based Approach for Identifying Security Requirements in Open Source Software Development. 2017 IEEE 25th International Requirements Engineering Conference Workshops (REW). :443–446.

There are several security requirements identification methods proposed by researchers in up-front requirements engineering (RE). However, in open source software (OSS) projects, developers use lightweight representation and refine requirements frequently by writing comments. They also tend to discuss security aspect in comments by providing code snippets, attachments, and external resource links. Since most security requirements identification methods in up-front RE are based on textual information retrieval techniques, these methods are not suitable for OSS projects or just-in-time RE. In our study, we propose a new model based on logistic regression to identify security requirements in OSS projects. We used five metrics to build security requirements identification models and tested the performance of these metrics by applying those models to three OSS projects. Our results show that four out of five metrics achieved high performance in intra-project testing.

2018-02-15
Backes, M., Rieck, K., Skoruppa, M., Stock, B., Yamaguchi, F..  2017.  Efficient and Flexible Discovery of PHP Application Vulnerabilities. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :334–349.

The Web today is a growing universe of pages and applications teeming with interactive content. The security of such applications is of the utmost importance, as exploits can have a devastating impact on personal and economic levels. The number one programming language in Web applications is PHP, powering more than 80% of the top ten million websites. Yet it was not designed with security in mind and, today, bears a patchwork of fixes and inconsistently designed functions with often unexpected and hardly predictable behavior that typically yield a large attack surface. Consequently, it is prone to different types of vulnerabilities, such as SQL Injection or Cross-Site Scripting. In this paper, we present an interprocedural analysis technique for PHP applications based on code property graphs that scales well to large amounts of code and is highly adaptable in its nature. We implement our prototype using the latest features of PHP 7, leverage an efficient graph database to store code property graphs for PHP, and subsequently identify different types of Web application vulnerabilities by means of programmable graph traversals. We show the efficacy and the scalability of our approach by reporting on an analysis of 1,854 popular open-source projects, comprising almost 80 million lines of code.

2018-02-14
Petrică, G., Axinte, S. D., Bacivarov, I. C., Firoiu, M., Mihai, I. C..  2017.  Studying cyber security threats to web platforms using attack tree diagrams. 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1–6.

Used by both information systems designers and security personnel, the Attack Tree method provides a graphical analysis of the ways in which an entity (a computer system or network, an entire organization, etc.) can be attacked and indicates the countermeasures that can be taken to prevent the attackers to reach their objective. In this paper, we built an Attack Tree focused on the goal “compromising the security of a Web platform”, considering the most common vulnerabilities of the WordPress platform identified by CVE (Common Vulnerabilities and Exposures), a global reference system for recording information regarding computer security threats. Finally, based on the likelihood of the attacks, we made a quantitative analysis of the probability that the security of the Web platform can be compromised.

2018-01-16
Benjamin, B., Coffman, J., Esiely-Barrera, H., Farr, K., Fichter, D., Genin, D., Glendenning, L., Hamilton, P., Harshavardhana, S., Hom, R. et al..  2017.  Data Protection in OpenStack. 2017 IEEE 10th International Conference on Cloud Computing (CLOUD). :560–567.

As cloud computing becomes increasingly pervasive, it is critical for cloud providers to support basic security controls. Although major cloud providers tout such features, relatively little is known in many cases about their design and implementation. In this paper, we describe several security features in OpenStack, a widely-used, open source cloud computing platform. Our contributions to OpenStack range from key management and storage encryption to guaranteeing the integrity of virtual machine (VM) images prior to boot. We describe the design and implementation of these features in detail and provide a security analysis that enumerates the threats that each mitigates. Our performance evaluation shows that these security features have an acceptable cost-in some cases, within the measurement error observed in an operational cloud deployment. Finally, we highlight lessons learned from our real-world development experiences from contributing these features to OpenStack as a way to encourage others to transition their research into practice.

2017-12-28
Stuckman, J., Walden, J., Scandariato, R..  2017.  The Effect of Dimensionality Reduction on Software Vulnerability Prediction Models. IEEE Transactions on Reliability. 66:17–37.

Statistical prediction models can be an effective technique to identify vulnerable components in large software projects. Two aspects of vulnerability prediction models have a profound impact on their performance: 1) the features (i.e., the characteristics of the software) that are used as predictors and 2) the way those features are used in the setup of the statistical learning machinery. In a previous work, we compared models based on two different types of features: software metrics and term frequencies (text mining features). In this paper, we broaden the set of models we compare by investigating an array of techniques for the manipulation of said features. These techniques fall under the umbrella of dimensionality reduction and have the potential to improve the ability of a prediction model to localize vulnerabilities. We explore the role of dimensionality reduction through a series of cross-validation and cross-project prediction experiments. Our results show that in the case of software metrics, a dimensionality reduction technique based on confirmatory factor analysis provided an advantage when performing cross-project prediction, yielding the best F-measure for the predictions in five out of six cases. In the case of text mining, feature selection can make the prediction computationally faster, but no dimensionality reduction technique provided any other notable advantage.

2017-05-17
Mahmud, Gazi.  2016.  Making Invisible Things Visible: Tracking Down Known Vulnerabilities at 3000 Companies (Showcase). Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. :25–25.

This year, software development teams around the world are consuming BILLIONS of open source and third-party components. The good news: they are accelerating time to market. The bad news: 1 in 17 components they are using include known security vulnerabilities. In this talk, I will describe what Sonatype, the company behind The Central Repository that supports Apache Maven, has learned from analyzing how thousands of applications use open source components. I will also discuss how organizations like Mayo Clinic, Exxon, Capital One, the U.S. FDA and Intuit are utilizing the principles of software supply chain automation to improve application security and how organizations can balance the need for speed with quality and security early in the development cycle.