Biblio
Modern software development frequently uses third-party packages, raising the concern of supply chain security attacks. Many attackers target popular package managers, like npm, and their users with supply chain attacks. In 2021 there was a 650% year-on-year growth in security attacks by exploiting Open Source Software's supply chain. Proactive approaches are needed to predict package vulnerability to high-risk supply chain attacks. The goal of this work is to help software developers and security specialists in measuring npm supply chain weak link signals to prevent future supply chain attacks by empirically studying npm package metadata.
In this paper, we analyzed the metadata of 1.63 million JavaScript npm packages. We propose six signals of security weaknesses in a software supply chain, such as the presence of install scripts, maintainer accounts associated with an expired email domain, and inactive packages with inactive maintainers. One of our case studies identified 11 malicious packages from the install scripts signal. We also found 2,818 maintainer email addresses associated with expired domains, allowing an attacker to hijack 8,494 packages by taking over the npm accounts. We obtained feedback on our weak link signals through a survey responded to by 470 npm package developers. The majority of the developers supported three out of our six proposed weak link signals. The developers also indicated that they would want to be notified about weak links signals before using third-party packages. Additionally, we discussed eight new signals suggested by package developers.
Web technologies are typically built with time constraints and security vulnerabilities. Automatic software vulnerability scanners are common tools for detecting such vulnerabilities among software developers. It helps to illustrate the program for the attacker by creating a great deal of engagement within the program. SQL Injection and Cross-Site Scripting (XSS) are two of the most commonly spread and dangerous vulnerabilities in web apps that cause to the user. It is very important to trust the findings of the site vulnerability scanning software. Without a clear idea of the accuracy and the coverage of the open-source tools, it is difficult to analyze the result from the automatic vulnerability scanner that provides. The important to do a comparison on the key figure on the automated vulnerability scanners because there are many kinds of a scanner on the market and this comparison can be useful to decide which scanner has better performance in term of SQL Injection and Cross-Site Scripting (XSS) vulnerabilities. In this paper, a method by Jose Fonseca et al, is used to compare open-source automated vulnerability scanners based on detection coverage and a method by Yuki Makino and Vitaly Klyuev for precision rate. The criteria vulnerabilities will be injected into the web applications which then be scanned by the scanners. The results then are compared by analyzing the precision rate and detection coverage of vulnerability detection. Two leading open source automated vulnerability scanners will be evaluated. In this paper, the scanner that being utilizes is OW ASP ZAP and Skipfish for comparison. The results show that from precision rate and detection rate scope, OW ASP ZAP has better performance than Skipfish by two times for precision rate and have almost the same result for detection coverage where OW ASP ZAP has a higher number in high vulnerabilities.
Performance-influence models can help stakeholders understand how and where configuration options and their interactions influence the performance of a system. With this understanding, stakeholders can debug performance behavior and make deliberate configuration decisions. Current black-box techniques to build such models combine various sampling and learning strategies, resulting in tradeoffs between measurement effort, accuracy, and interpretability. We present Comprex, a white-box approach to build performance-influence models for configurable systems, combining insights of local measurements, dynamic taint analysis to track options in the implementation, compositionality, and compression of the configuration space, without relying on machine learning to extrapolate incomplete samples. Our evaluation on 4 widely-used, open-source projects demonstrates that Comprex builds similarly accurate performance-influence models to the most accurate and expensive black-box approach, but at a reduced cost and with additional benefits from interpretable and local models.