Visible to the public Biblio

Found 411 results

Filters: Keyword is Analytical models  [Clear All Filters]
2018-04-02
Hong, J. B., Kim, D. S..  2017.  Discovering and Mitigating New Attack Paths Using Graphical Security Models. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :45–52.

To provide a comprehensive security analysis of modern networked systems, we need to take into account the combined effects of existing vulnerabilities and zero-day vulnerabilities. In addition to them, it is important to incorporate new vulnerabilities emerging from threats such as BYOD, USB file sharing. Consequently, there may be new dependencies between system components that could also create new attack paths, but previous work did not take into account those new attack paths in their security analysis (i.e., not all attack paths are taken into account). Thus, countermeasures may not be effective, especially against attacks exploiting the new attack paths. In this paper, we propose a Unified Vulnerability Risk Analysis Module (UV-RAM) to address the aforementioned problems by taking into account the combined effects of those vulnerabilities and capturing the new attack paths. The three main functionalities of UV-RAM are: (i) to discover new dependencies and new attack paths, (ii) to incorporate new vulnerabilities introduced and zero-day vulnerabilities into security analysis, and (iii) to formulate mitigation strategies for hardening the networked system. Our experimental results demonstrate and validate the effectiveness of UV-RAM.

Vernotte, A., Johnson, P., Ekstedt, M., Lagerström, R..  2017.  In-Depth Modeling of the UNIX Operating System for Architectural Cyber Security Analysis. 2017 IEEE 21st International Enterprise Distributed Object Computing Workshop (EDOCW). :127–136.

ICT systems have become an integral part of business and life. At the same time, these systems have become extremely complex. In such systems exist numerous vulnerabilities waiting to be exploited by potential threat actors. pwnPr3d is a novel modelling approach that performs automated architectural analysis with the objective of measuring the cyber security of the modeled architecture. Its integrated modelling language allows users to model software and hardware components with great level of details. To illustrate this capability, we present in this paper the metamodel of UNIX, operating systems being the core of every software and every IT system. After describing the main UNIX constituents and how they have been modelled, we illustrate how the modelled OS integrates within pwnPr3d's rationale by modelling the spreading of a self-replicating malware inspired by WannaCry.

Hill, Z., Nichols, W. M., Papa, M., Hale, J. C., Hawrylak, P. J..  2017.  Verifying Attack Graphs through Simulation. 2017 Resilience Week (RWS). :64–67.

Verifying attacks against cyber physical systems can be a costly and time-consuming process. By using a simulated environment, attacks can be verified quickly and accurately. By combining the simulation of a cyber physical system with a hybrid attack graph, the effects of a series of exploits can be accurately analysed. Furthermore, the use of a simulated environment to verify attacks may uncover new information about the nature of the attacks.

2018-03-19
Wang, A., Mohaisen, A., Chen, S..  2017.  An Adversary-Centric Behavior Modeling of DDoS Attacks. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :1126–1136.

Distributed Denial of Service (DDoS) attacks are some of the most persistent threats on the Internet today. The evolution of DDoS attacks calls for an in-depth analysis of those attacks. A better understanding of the attackers' behavior can provide insights to unveil patterns and strategies utilized by attackers. The prior art on the attackers' behavior analysis often falls in two aspects: it assumes that adversaries are static, and makes certain simplifying assumptions on their behavior, which often are not supported by real attack data. In this paper, we take a data-driven approach to designing and validating three DDoS attack models from temporal (e.g., attack magnitudes), spatial (e.g., attacker origin), and spatiotemporal (e.g., attack inter-launching time) perspectives. We design these models based on the analysis of traces consisting of more than 50,000 verified DDoS attacks from industrial mitigation operations. Each model is also validated by testing its effectiveness in accurately predicting future DDoS attacks. Comparisons against simple intuitive models further show that our models can more accurately capture the essential features of DDoS attacks.

Kamdem, G., Kamhoua, C., Lu, Y., Shetty, S., Njilla, L..  2017.  A Markov Game Theoritic Approach for Power Grid Security. 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW). :139–144.

The extensive use of information and communication technologies in power grid systems make them vulnerable to cyber-attacks. One class of cyber-attack is advanced persistent threats where highly skilled attackers can steal user authentication information's and then move laterally in the network, from host to host in a hidden manner, until they reach an attractive target. Once the presence of the attacker has been detected in the network, appropriate actions should be taken quickly to prevent the attacker going deeper. This paper presents a game theoretic approach to optimize the defense against an invader attempting to use a set of known vulnerabilities to reach critical nodes in the network. First, the network is modeled as a vulnerability multi-graph where the nodes represent physical hosts and edges the vulnerabilities that the attacker can exploit to move laterally from one host to another. Secondly, a two-player zero-sum Markov game is built where the states of the game represent the nodes of the vulnerability multi-graph graph and transitions correspond to the edge vulnerabilities that the attacker can exploit. The solution of the game gives the optimal strategy to disconnect vulnerable services and thus slow down the attack.

Bulusu, S. T., Laborde, R., Wazan, A. S., Barrere, F., Benzekri, A..  2017.  Describing Advanced Persistent Threats Using a Multi-Agent System Approach. 2017 1st Cyber Security in Networking Conference (CSNet). :1–3.

Advanced Persistent Threats are increasingly becoming one of the major concerns to many industries and organizations. Currently, there exists numerous articles and industrial reports describing various case studies of recent notable Advanced Persistent Threat attacks. However, these documents are expressed in natural language. This limits the efficient reusability of the threat intelligence information due to ambiguous nature of the natural language. In this article, we propose a model to formally represent Advanced Persistent Threats as multi-agent systems. Our model is inspired by the concepts of agent-oriented social modelling approaches, generally used for software security requirement analysis.

Ge, H., Yue, D., p Xie, X., Deng, S., Zhang, Y..  2017.  Analysis of Cyber Physical Systems Security via Networked Attacks. 2017 36th Chinese Control Conference (CCC). :4266–4272.

In this paper, cyber physical system is analyzed from security perspective. A double closed-loop security control structure and algorithm with defense functions is proposed. From this structure, the features of several cyber attacks are considered respectively. By this structure, the models of information disclosure, denial-of-service (DoS) and Man-in-the-Middle Attack (MITM) are proposed. According to each kind attack, different models are obtained and analyzed, then reduce to the unified models. Based on this, system security conditions are obtained, and a defense scenario with detail algorithm is design to illustrate the implementation of this program.

2018-03-05
Yusuf, S. E., Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Evaluating the Effectiveness of Security Metrics for Dynamic Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :277–284.

It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.

Yusuf, S. E., Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Evaluating the Effectiveness of Security Metrics for Dynamic Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :277–284.

It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.

Yusuf, S. E., Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Evaluating the Effectiveness of Security Metrics for Dynamic Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :277–284.

It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.

2018-02-27
Lighari, S. N., Hussain, D. M. A..  2017.  Hybrid Model of Rule Based and Clustering Analysis for Big Data Security. 2017 First International Conference on Latest Trends in Electrical Engineering and Computing Technologies (IN℡LECT). :1–5.

The most of the organizations tend to accumulate the data related to security, which goes up-to terabytes in every month. They collect this data to meet the security requirements. The data is mostly in the shape of logs like Dns logs, Pcap files, and Firewall data etc. The data can be related to any communication network like cloud, telecom, or smart grid network. Generally, these logs are stored in databases or warehouses which becomes ultimately gigantic in size. Such a huge size of data upsurge the importance of security analytics in big data. In surveys, the security experts grumble about the existing tools and recommend for special tools and methods for big data security analysis. In this paper, we are using a big data analysis tool, which is known as apache spark. Although this tool is used for general purpose but we have used this for security analysis. It offers a very good library for machine learning algorithms including the clustering which is the main algorithm used in our work. In this work, we have developed a novel model, which combines rule based and clustering analysis for security analysis of big dataset. The dataset we are using in our experiment is the Kddcup99 which is a widely used dataset for intrusion detection. It is of MBs in size but can be used as a test case for big data security analysis.

2018-02-21
Diovu, R. C., Agee, J. T..  2017.  Quantitative analysis of firewall security under DDoS attacks in smart grid AMI networks. 2017 IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON). :696–701.

One of the key objectives of distributed denial of service (DDoS) attack on the smart grid advanced metering infrastructure is to threaten the availability of end user's metering data. This will surely disrupt the smooth operations of the grid and third party operators who need this data for billing and other grid control purposes. In previous work, we proposed a cloud-based Openflow firewall for mitigation against DDoS attack in a smart grid AMI. In this paper, PRISM model checker is used to perform a probabilistic best-and worst-case analysis of the firewall with regard to DDoS attack success under different firewall detection probabilities ranging from zero to 1. The results from this quantitative analysis can be useful in determining the extent the DDoS attack can undermine the correctness and performance of the firewall. In addition, the study can also be helpful in knowing the extent the firewall can be improved by applying the knowledge derived from the worst-case performance of the firewall.

2018-02-15
Hibshi, H., Breaux, T. D..  2017.  Reinforcing Security Requirements with Multifactor Quality Measurement. 2017 IEEE 25th International Requirements Engineering Conference (RE). :144–153.

Choosing how to write natural language scenarios is challenging, because stakeholders may over-generalize their descriptions or overlook or be unaware of alternate scenarios. In security, for example, this can result in weak security constraints that are too general, or missing constraints. Another challenge is that analysts are unclear on where to stop generating new scenarios. In this paper, we introduce the Multifactor Quality Method (MQM) to help requirements analysts to empirically collect system constraints in scenarios based on elicited expert preferences. The method combines quantitative statistical analysis to measure system quality with qualitative coding to extract new requirements. The method is bootstrapped with minimal analyst expertise in the domain affected by the quality area, and then guides an analyst toward selecting expert-recommended requirements to monotonically increase system quality. We report the results of applying the method to security. This include 550 requirements elicited from 69 security experts during a bootstrapping stage, and subsequent evaluation of these results in a verification stage with 45 security experts to measure the overall improvement of the new requirements. Security experts in our studies have an average of 10 years of experience. Our results show that using our method, we detect an increase in the security quality ratings collected in the verification stage. Finally, we discuss how our proposed method helps to improve security requirements elicitation, analysis, and measurement.

2018-02-14
Zhao, J., Shetty, S., Pan, J. W..  2017.  Feature-based transfer learning for network security. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :17–22.

New and unseen network attacks pose a great threat to the signature-based detection systems. Consequently, machine learning-based approaches are designed to detect attacks, which rely on features extracted from network data. The problem is caused by different distribution of features in the training and testing datasets, which affects the performance of the learned models. Moreover, generating labeled datasets is very time-consuming and expensive, which undercuts the effectiveness of supervised learning approaches. In this paper, we propose using transfer learning to detect previously unseen attacks. The main idea is to learn the optimized representation to be invariant to the changes of attack behaviors from labeled training sets and non-labeled testing sets, which contain different types of attacks and feed the representation to a supervised classifier. To the best of our knowledge, this is the first effort to use a feature-based transfer learning technique to detect unseen variants of network attacks. Furthermore, this technique can be used with any common base classifier. We evaluated the technique on publicly available datasets, and the results demonstrate the effectiveness of transfer learning to detect new network attacks.

2018-02-06
Zhang, Y., Mao, W., Zeng, D..  2017.  Topic Evolution Modeling in Social Media Short Texts Based on Recurrent Semantic Dependent CRP. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :119–124.

Social media has become an important platform for people to express opinions, share information and communicate with others. Detecting and tracking topics from social media can help people grasp essential information and facilitate many security-related applications. As social media texts are usually short, traditional topic evolution models built based on LDA or HDP often suffer from the data sparsity problem. Recently proposed topic evolution models are more suitable for short texts, but they need to manually specify topic number which is fixed during different time period. To address these issues, in this paper, we propose a nonparametric topic evolution model for social media short texts. We first propose the recurrent semantic dependent Chinese restaurant process (rsdCRP), which is a nonparametric process incorporating word embeddings to capture semantic similarity information. Then we combine rsdCRP with word co-occurrence modeling and build our short-text oriented topic evolution model sdTEM. We carry out experimental studies on Twitter dataset. The results demonstrate the effectiveness of our method to monitor social media topic evolution compared to the baseline methods.

2018-02-02
Rieke, R., Seidemann, M., Talla, E. K., Zelle, D., Seeger, B..  2017.  Behavior Analysis for Safety and Security in Automotive Systems. 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). :381–385.

The connection of automotive systems with other systems such as road-side units, other vehicles, and various servers in the Internet opens up new ways for attackers to remotely access safety relevant subsystems within connected cars. The security of connected cars and the whole vehicular ecosystem is thus of utmost importance for consumer trust and acceptance of this emerging technology. This paper describes an approach for on-board detection of unanticipated sequences of events in order to identify suspicious activities. The results show that this approach is fast enough for in-vehicle application at runtime. Several behavior models and synchronization strategies are analyzed in order to narrow down suspicious sequences of events to be sent in a privacy respecting way to a global security operations center for further in-depth analysis.

Zha, X., Wang, X., Ni, W., Liu, R. P., Guo, Y. J., Niu, X., Zheng, K..  2017.  Analytic model on data security in VANETs. 2017 17th International Symposium on Communications and Information Technologies (ISCIT). :1–6.

Fast-changing topologies and uncoordinated transmissions are two critical challenges of implementing data security in vehicular ad-hoc networks (VANETs). We propose a new protocol, where transmitters adaptively switch between backing off retransmissions and changing keys to improve success rate. A new 3-dimensional (3-D) Markov model, which can analyze the proposed protocol with symmetric or asymmetric keys in terms of data security and connectivity, is developed. Analytical results, validated by simulations, show that the proposed protocol achieves substantially improved resistance against collusion attacks.

2018-01-23
Kilgallon, S., Rosa, L. De La, Cavazos, J..  2017.  Improving the effectiveness and efficiency of dynamic malware analysis with machine learning. 2017 Resilience Week (RWS). :30–36.

As the malware threat landscape is constantly evolving and over one million new malware strains are being generated every day [1], early automatic detection of threats constitutes a top priority of cybersecurity research, and amplifies the need for more advanced detection and classification methods that are effective and efficient. In this paper, we present the application of machine learning algorithms to predict the length of time malware should be executed in a sandbox to reveal its malicious intent. We also introduce a novel hybrid approach to malware classification based on static binary analysis and dynamic analysis of malware. Static analysis extracts information from a binary file without executing it, and dynamic analysis captures the behavior of malware in a sandbox environment. Our experimental results show that by turning the aforementioned problems into machine learning problems, it is possible to get an accuracy of up to 90% on the prediction of the malware analysis run time and up to 92% on the classification of malware families.

2017-12-28
Duan, S., Li, Y., Levitt, K..  2016.  Cost sensitive moving target consensus. 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA). :272–281.

Consensus is a fundamental approach to implementing fault-tolerant services through replication. It is well known that there exists a tradeoff between the cost and the resilience. For instance, Crash Fault Tolerant (CFT) protocols have a low cost but can only handle crash failures while Byzantine Fault Tolerant (BFT) protocols handle arbitrary failures but have a higher cost. Hybrid protocols enjoy the benefits of both high performance without failures and high resiliency under failures by switching among different subprotocols. However, it is challenging to determine which subprotocols should be used. We propose a moving target approach to switch among protocols according to the existing system and network vulnerability. At the core of our approach is a formalized cost model that evaluates the vulnerability and performance of consensus protocols based on real-time Intrusion Detection System (IDS) signals. Based on the evaluation results, we demonstrate that a safe, cheap, and unpredictable protocol is always used and a high IDS error rate can be tolerated.

Guo, J., Li, Z..  2017.  A Mean-Covariance Decomposition Modeling Method for Battery Capacity Prognostics. 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). :549–556.

Lithium Ion batteries usually degrade to an unacceptable capacity level after hundreds or even thousands of cycles. The continuously observed capacity fade data over time and their internal structure can be informative for constructing capacity fade models. This paper applies a mean-covariance decomposition modeling method to analyze the capacity fade data. The proposed approach directly examines the variances and correlations in data of interest and express the correlation matrix in hyper-spherical coordinates using angles and trigonometric functions. The proposed method is applied to model and predict key batteries performance metrics using testing data under various testing conditions.

2017-12-12
Durante, L., Seno, L., Valenza, F., Valenzano, A..  2017.  A model for the analysis of security policies in service function chains. 2017 IEEE Conference on Network Softwarization (NetSoft). :1–6.

Two emerging architectural paradigms, i.e., Software Defined Networking (SDN) and Network Function Virtualization (NFV), enable the deployment and management of Service Function Chains (SFCs). A SFC is an ordered sequence of abstract Service Functions (SFs), e.g., firewalls, VPN-gateways, traffic monitors, that packets have to traverse in the route from source to destination. While this appealing solution offers significant advantages in terms of flexibility, it also introduces new challenges such as the correct configuration and ordering of SFs in the chain to satisfy overall security requirements. This paper presents a formal model conceived to enable the verification of correct policy enforcements in SFCs. Software tools based on the model can then be designed to cope with unwanted network behaviors (e.g., security flaws) deriving from incorrect interactions of SFs of the same SFC. 

Zhang, M., Chen, Q., Zhang, Y., Liu, X., Dong, S..  2017.  Requirement analysis and descriptive specification for exploratory evaluation of information system security protection capability. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1874–1878.

Exploratory evaluation is an effective way to analyze and improve the security of information system. The information system structure model for security protection capability is set up in view of the exploratory evaluation requirements of security protection capability, and the requirements of agility, traceability and interpretation for exploratory evaluation are obtained by analyzing the relationship between information system, protective equipment and protection policy. Aimed at the exploratory evaluation description problem of security protection capability, the exploratory evaluation problem and exploratory evaluation process are described based on the Granular Computing theory, and a general mathematical description is established. Analysis shows that the standardized description established meets the exploratory evaluation requirements, and it can provide an analysis basis and description specification for exploratory evaluation of information system security protection capability.

Miller, J. A., Peng, H., Cotterell, M. E..  2017.  Adding Support for Theory in Open Science Big Data. 2017 IEEE World Congress on Services (SERVICES). :71–75.

Open Science Big Data is emerging as an important area of research and software development. Although there are several high quality frameworks for Big Data, additional capabilities are needed for Open Science Big Data. These include data provenance, citable reusable data, data sources providing links to research literature, relationships to other data and theories, transparent analysis/reproducibility, data privacy, new optimizations/advanced algorithms, data curation, data storage and transfer. An important part of science is explanation of results, ideally leading to theory formation. In this paper, we examine means for supporting the use of theory in big data analytics as well as using big data to assist in theory formation. One approach is to fit data in a way that is compatible with some theory, existing or new. Functional Data Analysis allows precise fitting of data as well as penalties for lack of smoothness or even departure from theoretical expectations. This paper discusses principal differential analysis and related techniques for fitting data where, for example, a time-based process is governed by an ordinary differential equation. Automation in theory formation is also considered. Case studies in the fields of computational economics and finance are considered.

Zaytsev, A., Malyuk, A., Miloslavskaya, N..  2017.  Critical Analysis in the Research Area of Insider Threats. 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud). :288–296.

The survey of related works on insider information security (IS) threats is presented. Special attention is paid to works that consider the insiders' behavioral models as it is very up-to-date for behavioral intrusion detection. Three key research directions are defined: 1) the problem analysis in general, including the development of taxonomy for insiders, attacks and countermeasures; 2) study of a specific IS threat with forecasting model development; 3) early detection of a potential insider. The models for the second and third directions are analyzed in detail. Among the second group the works on three IS threats are examined, namely insider espionage, cyber sabotage and unintentional internal IS violation. Discussion and a few directions for the future research conclude the paper.

2017-12-04
Gonzalez, A. G., Millinger, J., Soulard, J..  2016.  Magnet losses in inverter-fed two-pole PM machines. 2016 XXII International Conference on Electrical Machines (ICEM). :1854–1860.

This article deals with the estimation of magnet losses in a permanent-magnet motor inserted in a nut-runner. This type of machine has interesting features such as being two-pole, slot-less and running at a high speed (30000 rpm). Two analytical models were chosen from the literature. A numerical estimation of the losses with 2D Finite Element Method was carried out. A detailed investigation of the effect of simulation settings (e.g., mesh size, time-step, remanence flux density in the magnet, superposition of the losses, etc.) was performed. Finally, calculation of losses with 3D-FEM were also run in order to compare the calculated losses with both analytical and 2D-FEM results. The estimation of the losses focuses on a range of frequencies between 10 and 100 kHz.