Visible to the public Biblio

Filters: Keyword is outsourcing computation  [Clear All Filters]
2020-11-16
Geeta, C. M., Rashmi, B. N., Raju, R. G. Shreyas, Raghavendra, S., Buyya, R., Venugopal, K. R., Iyengar, S. S., Patnaik, L. M..  2019.  EAODBT: Efficient Auditing for Outsourced Database with Token Enforced Cloud Storage. 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). :1–4.
Database outsourcing is one of the important utilities in cloud computing in which the Information Proprietor (IP) transfers the database administration to the Cloud Service Provider (CSP) in order to minimize the administration cost and preservation expenses of the database. Inspite of its immense profit, it undergoes few security issues such as privacy of deployed database and provability of search results. In the recent past, few of the studies have been carried out on provability of search results of Outsourced Database (ODB) that affords correctness and completeness of search results. But in the existing schemes, since there is flow of data between the Information Proprietor and the clients frequently, huge communication cost prevails at the Information Proprietor side. To address this challenge, in this paper we propose Efficient Auditing for Outsourced Database with Token Enforced Cloud Storage (EAODBT). The proposed scheme reduces the large communication cost prevailing at the Information Proprietor side and achieves correctness and completeness of search results even if the mischievous CSP knowingly sends a null set. Experimental analysis show that the proposed scheme has totally reduced the huge communication cost prevailing between Information Proprietor and clients, and simultaneously achieves the correctness and completeness of search results.
2018-02-21
Fu, Shaojing, Yu, Yunpeng, Xu, Ming.  2017.  A Secure Algorithm for Outsourcing Matrix Multiplication Computation in the Cloud. Proceedings of the Fifth ACM International Workshop on Security in Cloud Computing. :27–33.
Matrix multiplication computation (MMC) is a common scientific and engineering computational task. But such computation involves enormous computing resources for large matrices, which is burdensome for the resource-limited clients. Cloud computing enables computational resource-limited clients to economically outsource such problems to the cloud server. However, outsourcing matrix multiplication to the cloud brings great security concerns and challenges since the matrices and their products often usually contains sensitive information. In a previous work, Lei et al. [1] proposed an algorithm for secure outsourcing MMC by using permutation matrix and the authors argued that it can achieve data privacy. In this paper, we first review the design of Lei's scheme and find a security vulnerability in their algorithm that it reveals the number of zero element in the input matrix to cloud server. Then we present a new verifiable, efficient, and privacy preserving algorithm for outsourcing MMC, which can protect the number privacy of zero elements in original matrices. Our algorithm builds on a series of carefully-designed pseudorandom matrices and well-designed privacy-preserving matrix transformation. Security analysis shows that our algorithm is practically-secure, and offers a higher level of privacy protection than the state-of-the-art algorithm.
2017-05-30
Wang, Qian, Wang, Jingjun, Hu, Shengshan, Zou, Qin, Ren, Kui.  2016.  SecHOG: Privacy-Preserving Outsourcing Computation of Histogram of Oriented Gradients in the Cloud. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :257–268.

Abundant multimedia data generated in our daily life has intrigued a variety of very important and useful real-world applications such as object detection and recognition etc. Accompany with these applications, many popular feature descriptors have been developed, e.g., SIFT, SURF and HOG. Manipulating massive multimedia data locally, however, is a storage and computation intensive task, especially for resource-constrained clients. In this work, we focus on exploring how to securely outsource the famous feature extraction algorithm–Histogram of Oriented Gradients (HOG) to untrusted cloud servers, without revealing the data owner's private information. For the first time, we investigate this secure outsourcing computation problem under two different models and accordingly propose two novel privacy-preserving HOG outsourcing protocols, by efficiently encrypting image data by somewhat homomorphic encryption (SHE) integrated with single-instruction multiple-data (SIMD), designing a new batched secure comparison protocol, and carefully redesigning every step of HOG to adapt it to the ciphertext domain. Explicit Security and effectiveness analysis are presented to show that our protocols are practically-secure and can approximate well the performance of the original HOG executed in the plaintext domain. Our extensive experimental evaluations further demonstrate that our solutions achieve high efficiency and perform comparably to the original HOG when being applied to human detection.

2017-05-17
Ren, Yanli, Ding, Ning, Zhang, Xinpeng, Lu, Haining, Gu, Dawu.  2016.  Verifiable Outsourcing Algorithms for Modular Exponentiations with Improved Checkability. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :293–303.

The problem of securely outsourcing computation has received widespread attention due to the development of cloud computing and mobile devices. In this paper, we first propose a secure verifiable outsourcing algorithm of single modular exponentiation based on the one-malicious model of two untrusted servers. The outsourcer could detect any failure with probability 1 if one of the servers misbehaves. We also present the other verifiable outsourcing algorithm for multiple modular exponentiations based on the same model. Compared with the state-of-the-art algorithms, the proposed algorithms improve both checkability and efficiency for the outsourcer. Finally, we utilize the proposed algorithms as two subroutines to achieve outsource-secure polynomial evaluation and ciphertext-policy attributed-based encryption (CP-ABE) scheme with verifiable outsourced encryption and decryption.