Visible to the public Biblio

Filters: Keyword is transaction data  [Clear All Filters]
2018-02-06
Salman, O., Kayssi, A., Chehab, A., Elhajj, I..  2017.  Multi-Level Security for the 5G/IoT Ubiquitous Network. 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC). :188–193.

5G, the fifth generation of mobile communication networks, is considered as one of the main IoT enablers. Connecting billions of things, 5G/IoT will be dealing with trillions of GBytes of data. Securing such large amounts of data is a very challenging task. Collected data varies from simple temperature measurements to more critical transaction data. Thus, applying uniform security measures is a waste of resources (processing, memory, and network bandwidth). Alternatively, a multi-level security model needs to be applied according to the varying requirements. In this paper, we present a multi-level security scheme (BLP) applied originally in the information security domain. We review its application in the network domain, and propose a modified version of BLP for the 5G/IoT case. The proposed model is proven to be secure and compliant with the model rules.

2017-05-18
Lin, Jerry Chun-Wei, Liu, Qiankun, Fournier-Viger, Philippe, Hong, Tzung-Pei, Zhan, Justin, Voznak, Miroslav.  2016.  An Efficient Anonymous System for Transaction Data. Proceedings of the The 3rd Multidisciplinary International Social Networks Conference on SocialInformatics 2016, Data Science 2016. :28:1–28:6.

k-anonymity is an efficient way to anonymize the relational data to protect privacy against re-identification attacks. For the purpose of k-anonymity on transaction data, each item is considered as the quasi-identifier attribute, thus increasing high dimension problem as well as the computational complexity and information loss for anonymity. In this paper, an efficient anonymity system is designed to not only anonymize transaction data with lower information loss but also reduce the computational complexity for anonymity. An extensive experiment is carried to show the efficiency of the designed approach compared to the state-of-the-art algorithms for anonymity in terms of runtime and information loss. Experimental results indicate that the proposed anonymous system outperforms the compared algorithms in all respects.