Visible to the public Biblio

Filters: Keyword is RNN  [Clear All Filters]
2023-06-29
Mahara, Govind Singh, Gangele, Sharad.  2022.  Fake news detection: A RNN-LSTM, Bi-LSTM based deep learning approach. 2022 IEEE 1st International Conference on Data, Decision and Systems (ICDDS). :01–06.

Fake news is a new phenomenon that promotes misleading information and fraud via internet social media or traditional news sources. Fake news is readily manufactured and transmitted across numerous social media platforms nowadays, and it has a significant influence on the real world. It is vital to create effective algorithms and tools for detecting misleading information on social media platforms. Most modern research approaches for identifying fraudulent information are based on machine learning, deep learning, feature engineering, graph mining, image and video analysis, and newly built datasets and online services. There is a pressing need to develop a viable approach for readily detecting misleading information. The deep learning LSTM and Bi-LSTM model was proposed as a method for detecting fake news, In this work. First, the NLTK toolkit was used to remove stop words, punctuation, and special characters from the text. The same toolset is used to tokenize and preprocess the text. Since then, GLOVE word embeddings have incorporated higher-level characteristics of the input text extracted from long-term relationships between word sequences captured by the RNN-LSTM, Bi-LSTM model to the preprocessed text. The proposed model additionally employs dropout technology with Dense layers to improve the model's efficiency. The proposed RNN Bi-LSTM-based technique obtains the best accuracy of 94%, and 93% using the Adam optimizer and the Binary cross-entropy loss function with Dropout (0.1,0.2), Once the Dropout range increases it decreases the accuracy of the model as it goes 92% once Dropout (0.3).

Abbas, Qamber, Zeshan, Muhammad Umar, Asif, Muhammad.  2022.  A CNN-RNN Based Fake News Detection Model Using Deep Learning. 2022 International Seminar on Computer Science and Engineering Technology (SCSET). :40–45.

False news has become widespread in the last decade in political, economic, and social dimensions. This has been aided by the deep entrenchment of social media networking in these dimensions. Facebook and Twitter have been known to influence the behavior of people significantly. People rely on news/information posted on their favorite social media sites to make purchase decisions. Also, news posted on mainstream and social media platforms has a significant impact on a particular country’s economic stability and social tranquility. Therefore, there is a need to develop a deceptive system that evaluates the news to avoid the repercussions resulting from the rapid dispersion of fake news on social media platforms and other online platforms. To achieve this, the proposed system uses the preprocessing stage results to assign specific vectors to words. Each vector assigned to a word represents an intrinsic characteristic of the word. The resulting word vectors are then applied to RNN models before proceeding to the LSTM model. The output of the LSTM is used to determine whether the news article/piece is fake or otherwise.

2023-04-14
Chen, Yang, Luo, Xiaonan, Xu, Songhua, Chen, Ruiai.  2022.  CaptchaGG: A linear graphical CAPTCHA recognition model based on CNN and RNN. 2022 9th International Conference on Digital Home (ICDH). :175–180.
This paper presents CaptchaGG, a model for recognizing linear graphical CAPTCHAs. As in the previous society, CAPTCHA is becoming more and more complex, but in some scenarios, complex CAPTCHA is not needed, and usually, linear graphical CAPTCHA can meet the corresponding functional scenarios, such as message boards of websites and registration of accounts with low security. The scheme is based on convolutional neural networks for feature extraction of CAPTCHAs, recurrent neural forests A neural network that is too complex will lead to problems such as difficulty in training and gradient disappearance, and too simple will lead to underfitting of the model. For the single problem of linear graphical CAPTCHA recognition, the model which has a simple architecture, extracting features by convolutional neural network, sequence modeling by recurrent neural network, and finally classification and recognition, can achieve an accuracy of 96% or more recognition at a lower complexity.
2023-02-03
Hussainy, Abdelrahman S., Khalifa, Mahmoud A., Elsayed, Abdallah, Hussien, Amr, Razek, Mohammed Abdel.  2022.  Deep Learning Toward Preventing Web Attacks. 2022 5th International Conference on Computing and Informatics (ICCI). :280–285.
Cyberattacks are one of the most pressing issues of our time. The impact of cyberthreats can damage various sectors such as business, health care, and governments, so one of the best solutions to deal with these cyberattacks and reduce cybersecurity threats is using Deep Learning. In this paper, we have created an in-depth study model to detect SQL Injection Attacks and Cross-Site Script attacks. We focused on XSS on the Stored-XSS attack type because SQL and Stored-XSS have similar site management methods. The advantage of combining deep learning with cybersecurity in our system is to detect and prevent short-term attacks without human interaction, so our system can reduce and prevent web attacks. This post-training model achieved a more accurate result more than 99% after maintaining the learning level, and 99% of our test data is determined by this model if this input is normal or dangerous.
2022-10-13
M, Yazhmozhi V., Janet, B., Reddy, Srinivasulu.  2020.  Anti-phishing System using LSTM and CNN. 2020 IEEE International Conference for Innovation in Technology (INOCON). :1—5.
Users prefer to do e-banking and e-shopping now-a-days because of the exponential growth of the internet. Because of this paradigm shift, hackers are finding umpteen ways to steal our personal information and critical details like details of debit and credit cards, by disguising themselves as reputed websites, just by changing the spelling or making minor modifications to the URL. Identifying whether an URL is benign or malicious is a challenging job, because it makes use of the weakness of the user. While there are several works carried out to detect phishing websites, they only use heuristic methods and list based techniques and therefore couldn't avoid phishing effectively. In this paper an anti-phishing system was proposed to protect the users. It uses an ensemble model that uses both LSTM and CNN with a massive data set containing nearly 2,00,000 URLs, that is balanced. After analyzing the accuracy of different existing approaches, it has been found that the ensemble model that uses both LSTM and CNN performed better with an accuracy of 96% and the precision is 97% respectively which is far better than the existing solutions.
2022-09-29
Duman, Atahan, Sogukpinar, Ibrahim.  2021.  Deep Learning Based Event Correlation Analysis in Information Systems. 2021 6th International Conference on Computer Science and Engineering (UBMK). :209–214.
Information systems and applications provide indispensable services at every stage of life, enabling us to carry out our activities more effectively and efficiently. Today, information technology systems produce many alarm and event records. These produced records often have a relationship with each other, and when this relationship is captured correctly, many interruptions that will harm institutions can be prevented before they occur. For example, an increase in the disk I/O speed of a server or a problem may cause the business software running on that server to slow down and cause different results in this slowness. Here, an institution’s accurate analysis and management of all event records, and rule-based analysis of the resulting records in certain time periods and depending on certain rules will ensure efficient and effective management of millions of alarms. In addition, it will be possible to prevent possible problems by removing the relationships between events. Events that occur in IT systems are a kind of footprint. It is also vital to keep a record of the events in question, and when necessary, these event records can be analyzed to analyze the efficiency of the systems, harmful interferences, system failure tendency, etc. By understanding the undesirable situations such as taking the necessary precautions, possible losses can be prevented. In this study, the model developed for fault prediction in systems by performing event log analysis in information systems is explained and the experimental results obtained are given.
2022-06-30
Mistry, Rahul, Thatte, Girish, Waghela, Amisha, Srinivasan, Gayatri, Mali, Swati.  2021.  DeCaptcha: Cracking captcha using Deep Learning Techniques. 2021 5th International Conference on Information Systems and Computer Networks (ISCON). :1—6.
CAPTCHA or Completely Automated Public Turing test to Tell Computers and Humans Apart is a technique to distinguish between humans and computers by generating and evaluating tests that can be passed by humans but not computer bots. However, captchas are not foolproof, and they can be bypassed which raises security concerns. Hence, sites over the internet remain open to such vulnerabilities. This research paper identifies the vulnerabilities found in some of the commonly used captcha schemes by cracking them using Deep Learning techniques. It also aims to provide solutions to safeguard against these vulnerabilities and provides recommendations for the generation of secure captchas.
2022-04-19
Farea, Abdulgbar A. R., Wang, Chengliang, Farea, Ebraheem, Ba Alawi, Abdulfattah.  2021.  Cross-Site Scripting (XSS) and SQL Injection Attacks Multi-classification Using Bidirectional LSTM Recurrent Neural Network. 2021 IEEE International Conference on Progress in Informatics and Computing (PIC). :358–363.
E-commerce, ticket booking, banking, and other web-based applications that deal with sensitive information, such as passwords, payment information, and financial information, are widespread. Some web developers may have different levels of understanding about securing an online application. The two vulnerabilities identified by the Open Web Application Security Project (OWASP) for its 2017 Top Ten List are SQL injection and Cross-site Scripting (XSS). Because of these two vulnerabilities, an attacker can take advantage of these flaws and launch harmful web-based actions. Many published articles concentrated on a binary classification for these attacks. This article developed a new approach for detecting SQL injection and XSS attacks using deep learning. SQL injection and XSS payloads datasets are combined into a single dataset. The word-embedding technique is utilized to convert the word’s text into a vector. Our model used BiLSTM to auto feature extraction, training, and testing the payloads dataset. BiLSTM classified the payloads into three classes: XSS, SQL injection attacks, and normal. The results showed great results in classifying payloads into three classes: XSS attacks, injection attacks, and non-malicious payloads. BiLSTM showed high performance reached 99.26% in terms of accuracy.
2022-03-14
Basnet, Manoj, Poudyal, Subash, Ali, Mohd. Hasan, Dasgupta, Dipankar.  2021.  Ransomware Detection Using Deep Learning in the SCADA System of Electric Vehicle Charging Station. 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). :1—5.
The Supervisory control and data acquisition (SCADA) systems have been continuously leveraging the evolution of network architecture, communication protocols, next-generation communication techniques (5G, 6G, Wi-Fi 6), and the internet of things (IoT). However, SCADA system has become the most profitable and alluring target for ransomware attackers. This paper proposes the deep learning-based novel ransomware detection framework in the SCADA controlled electric vehicle charging station (EVCS) with the performance analysis of three deep learning algorithms, namely deep neural network (DNN), 1D convolution neural network (CNN), and long short-term memory (LSTM) recurrent neural network. All three-deep learning-based simulated frameworks achieve around 97% average accuracy (ACC), more than 98% of the average area under the curve (AUC) and an average F1-score under 10-fold stratified cross-validation with an average false alarm rate (FAR) less than 1.88%. Ransomware driven distributed denial of service (DDoS) attack tends to shift the state of charge (SOC) profile by exceeding the SOC control thresholds. Also, ransomware driven false data injection (FDI) attack has the potential to damage the entire BES or physical system by manipulating the SOC control thresholds. It's a design choice and optimization issue that a deep learning algorithm can deploy based on the tradeoffs between performance metrics.
Aldossary, Lina Abdulaziz, Ali, Mazen, Alasaadi, Abdulla.  2021.  Securing SCADA Systems against Cyber-Attacks using Artificial Intelligence. 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :739—745.
Monitoring and managing electric power generation, distribution and transmission requires supervisory control and data acquisition (SCADA) systems. As technology has developed, these systems have become huge, complicated, and distributed, which makes them susceptible to new risks. In particular, the lack of security in SCADA systems make them a target for network attacks such as denial of service (DoS) and developing solutions for this issue is the main objective of this thesis. By reviewing various existing system solutions for securing SCADA systems, a new security approach is recommended that employs Artificial Intelligence(AI). AI is an innovative approach that imparts learning ability to software. Here deep learning algorithms and machine learning algorithms are used to develop an intrusion detection system (IDS) to combat cyber-attacks. Various methods and algorithms are evaluated to obtain the best results in intrusion detection. The results reveal the Bi-LSTM IDS technique provides the highest intrusion detection (ID) performance compared with previous techniques to secure SCADA systems
2021-11-08
Ma, Qicheng, Rastogi, Nidhi.  2020.  DANTE: Predicting Insider Threat using LSTM on system logs. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1151–1156.
Insider threat is one of the most pernicious threat vectors to information and communication technologies (ICT) across the world due to the elevated level of trust and access that an insider is afforded. This type of threat can stem from both malicious users with a motive as well as negligent users who inadvertently reveal details about trade secrets, company information, or even access information to malignant players. In this paper, we propose a novel approach that uses system logs to detect insider behavior using a special recurrent neural network (RNN) model. Ground truth is established using DANTE and used as baseline for identifying anomalous behavior. For this, system logs are modeled as a natural language sequence and patterns are extracted from these sequences. We create workflows of sequences of actions that follow a natural language logic and control flow. These flows are assigned various categories of behaviors - malignant or benign. Any deviation from these sequences indicates the presence of a threat. We further classify threats into one of the five categories provided in the CERT insider threat dataset. Through experimental evaluation, we show that the proposed model can achieve 93% prediction accuracy.
2021-03-09
Hossain, T., rakshit, A., Konar, A..  2020.  Brain-Computer Interface based User Authentication System for Personal Device Security. 2020 International Conference on Computer, Electrical Communication Engineering (ICCECE). :1—6.

The paper proposes a novel technique of EEG induced Brain-Computer Interface system for user authentication of personal devices. The scheme enables a human user to lock and unlock any personal device using his/her mind generated password. A two stage security verification is employed in the scheme. In the first stage, a 3 × 3 spatial matrix of flickering circles will appear on the screen of which, rows are blinked randomly and user has to mentally select a row which contains his desired circle.P300 is released when the desired row is blinked. Successful selection of row is followed by the selection of a flickering circle in the desired row. Gazing at a particular flickering circle generates SSVEP brain pattern which is decoded to trace the mentally selected circle. User is able to store mentally uttered number in the selected circle, later the number with it's spatial position will serve as the password for the unlocking phase. Here, the user is equipped with a headphone where numbers starting from zero to nine are spelled randomly. Spelled number matching with the mentally uttered number generates auditory P300 in the subject's brain. The particular choice of mentally uttered number is detected by successful detection of auditory P300. A novel weight update algorithm of Recurrent Neural Network (RNN), based on Extended-Kalman Filter and Particle Filter is used here for classifying the brain pattern. The proposed classifier achieves the best classification accuracy of 95.6%, 86.5% and 83.5% for SSVEP, visual P300 and auditory P300 respectively.

2021-02-23
Park, S. H., Park, H. J., Choi, Y..  2020.  RNN-based Prediction for Network Intrusion Detection. 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :572—574.
We investigate a prediction model using RNN for network intrusion detection in industrial IoT environments. For intrusion detection, we use anomaly detection methods that estimate the next packet, measure and score the distance measurement in real packets to distinguish whether it is a normal packet or an abnormal packet. When the packet was learned in the LSTM model, two-gram and sliding window of N-gram showed the best performance in terms of errors and the performance of the LSTM model was the highest compared with other data mining regression techniques. Finally, cosine similarity was used as a scoring function, and anomaly detection was performed by setting a boundary for cosine similarity that consider as normal packet.
Al-Emadi, S., Al-Mohannadi, A., Al-Senaid, F..  2020.  Using Deep Learning Techniques for Network Intrusion Detection. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT). :171—176.
In recent years, there has been a significant increase in network intrusion attacks which raises a great concern from the privacy and security aspects. Due to the advancement of the technology, cyber-security attacks are becoming very complex such that the current detection systems are not sufficient enough to address this issue. Therefore, an implementation of an intelligent and effective network intrusion detection system would be crucial to solve this problem. In this paper, we use deep learning techniques, namely, Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to design an intelligent detection system which is able to detect different network intrusions. Additionally, we evaluate the performance of the proposed solution using different evaluation matrices and we present a comparison between the results of our proposed solution to find the best model for the network intrusion detection system.
2020-05-18
Chen, Long.  2019.  Assertion Detection in Clinical Natural Language Processing: A Knowledge-Poor Machine Learning Approach. 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT). :37–40.
Natural language processing (NLP) have been recently used to extract clinical information from free text in Electronic Health Record (EHR). In clinical NLP one challenge is that the meaning of clinical entities is heavily affected by assertion modifiers such as negation, uncertain, hypothetical, experiencer and so on. Incorrect assertion assignment could cause inaccurate diagnosis of patients' condition or negatively influence following study like disease modeling. Thus, clinical NLP systems which can detect assertion status of given target medical findings (e.g. disease, symptom) in clinical context are highly demanded. Here in this work, we propose a deep-learning system based on word embedding, RNN and attention mechanism (more specifically: Attention-based Bidirectional Long Short-Term Memory networks) for assertion detection in clinical notes. Unlike previous state-of-art methods which require knowledge input or feature engineering, our system is a knowledge poor machine learning system and can be easily extended or transferred to other domains. The evaluation of our system on public benchmarking corpora demonstrates that a knowledge poor deep-learning system can also achieve high performance for detecting negation and assertions comparing to state-of-the-art systems.
2020-02-10
Shahariar, G. M., Biswas, Swapnil, Omar, Faiza, Shah, Faisal Muhammad, Binte Hassan, Samiha.  2019.  Spam Review Detection Using Deep Learning. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0027–0033.

A robust and reliable system of detecting spam reviews is a crying need in todays world in order to purchase products without being cheated from online sites. In many online sites, there are options for posting reviews, and thus creating scopes for fake paid reviews or untruthful reviews. These concocted reviews can mislead the general public and put them in a perplexity whether to believe the review or not. Prominent machine learning techniques have been introduced to solve the problem of spam review detection. The majority of current research has concentrated on supervised learning methods, which require labeled data - an inadequacy when it comes to online review. Our focus in this article is to detect any deceptive text reviews. In order to achieve that we have worked with both labeled and unlabeled data and proposed deep learning methods for spam review detection which includes Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN) and a variant of Recurrent Neural Network (RNN) that is Long Short-Term Memory (LSTM). We have also applied some traditional machine learning classifiers such as Nave Bayes (NB), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) to detect spam reviews and finally, we have shown the performance comparison for both traditional and deep learning classifiers.

2019-08-12
Fok, Wilton W. T., Chan, Louis C. W., Chen, Carol.  2018.  Artificial Intelligence for Sport Actions and Performance Analysis Using Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM). Proceedings of the 2018 4th International Conference on Robotics and Artificial Intelligence. :40–44.
The development of Human Action Recognition (HAR) system is getting popular. This project developed a HAR system for the application in the surveillance system to minimize the man-power for providing security to the citizens such as public safety and crime prevention. In this research, deep learning network using Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) are used to analyze dynamic video motion of sport actions and classify different types of actions and their performance. It could classify different types of human motion with a small number of video frame for efficiency and memory saving. The current accuracy achieved is up to 92.9% but with high potential of further improvement.
2019-03-11
Cheng, Xianglong, Li, Xiaoyong.  2018.  Trust Evaluation in Online Social Networks Based on Knowledge Graph. Proceedings of the 2018 International Conference on Algorithms, Computing and Artificial Intelligence. :23:1–23:7.

With the development of Online Social Networks(OSNs), OSNs have been becoming very popular platforms to publish resources and to establish relationship with friends. However, due to the lack of prior knowledge of others, there are usually risks associated with conducting network activities, especially those involving money. Therefore, it will be necessary to quantify the trust relationship of users in OSNs, which can help users decide whether they can trust another user. In this paper, we present a novel method for evaluating trust in OSNs using knowledge graph (KG), which is the cornerstone of artificial intelligence. And we focus on the two contributions for trust evaluation in OSNs: (i) a novel method using RNN to quantify trustworthiness in OSNs, which is inspired by relationship prediction in KG; (ii) a Path Reliability Measuring algorithm (PRM) to decide the reliability of a path from the trustor to the trustee. The experiment result shows that our method is more effective than traditional methods.

2017-05-18
Gu, Xiaodong, Zhang, Hongyu, Zhang, Dongmei, Kim, Sunghun.  2016.  Deep API Learning. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. :631–642.

Developers often wonder how to implement a certain functionality (e.g., how to parse XML files) using APIs. Obtaining an API usage sequence based on an API-related natural language query is very helpful in this regard. Given a query, existing approaches utilize information retrieval models to search for matching API sequences. These approaches treat queries and APIs as bags-of-words and lack a deep understanding of the semantics of the query. We propose DeepAPI, a deep learning based approach to generate API usage sequences for a given natural language query. Instead of a bag-of-words assumption, it learns the sequence of words in a query and the sequence of associated APIs. DeepAPI adapts a neural language model named RNN Encoder-Decoder. It encodes a word sequence (user query) into a fixed-length context vector, and generates an API sequence based on the context vector. We also augment the RNN Encoder-Decoder by considering the importance of individual APIs. We empirically evaluate our approach with more than 7 million annotated code snippets collected from GitHub. The results show that our approach generates largely accurate API sequences and outperforms the related approaches.