Visible to the public Biblio

Filters: Keyword is Control System  [Clear All Filters]
2022-05-03
Tantawy, Ashraf.  2021.  Automated Malware Design for Cyber Physical Systems. 2021 9th International Symposium on Digital Forensics and Security (ISDFS). :1—6.

The design of attacks for cyber physical systems is critical to assess CPS resilience at design time and run-time, and to generate rich datasets from testbeds for research. Attacks against cyber physical systems distinguish themselves from IT attacks in that the main objective is to harm the physical system. Therefore, both cyber and physical system knowledge are needed to design such attacks. The current practice to generate attacks either focuses on the cyber part of the system using IT cyber security existing body of knowledge, or uses heuristics to inject attacks that could potentially harm the physical process. In this paper, we present a systematic approach to automatically generate integrity attacks from the CPS safety and control specifications, without knowledge of the physical system or its dynamics. The generated attacks violate the system operational and safety requirements, hence present a genuine test for system resilience. We present an algorithm to automate the malware payload development. Several examples are given throughout the paper to illustrate the proposed approach.

2022-02-10
Shardyko, Igor, Samorodova, Maria, Titov, Victor.  2020.  Development of Control System for a SEA-Joint Based on Active Damping Injection. 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1–6.
This paper is devoted to the choice and justification of a joint-level controller for a joint with intrinsic elasticity. Such joints show a number of advantages in terms of shock robustness, interaction safety, energy efficiency and so on. On the other hand, the addition of elastic element, i.e. a torsion spring, leads to oscillating behaviour. Thus, more elaborate controller structure is required. Active damping injection approach is chosen in this article to improve the joint performance and achieve smooth motion. A method to select controller gains is suggested as well which allows step-wise customization, by which either the settling time can be minimized or the motion can be made fully smooth. Finally, the controller performance is verified in simulation.
2021-09-09
Zarubskiy, Vladimir G., Bondarchuk, Aleksandr S., Bondarchuk, Ksenija A..  2020.  Evaluation of the Computational Complexity of Implementation of the Process of Adaptation of High-Reliable Control Systems. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :964–967.
The development of control systems of increased reliability is highly relevant due to their widespread introduction in various sectors of human activity, including those where failure of the control system can lead to serious or catastrophic consequences. The increase of the reliability of control systems is directly related with the reliability of control computers (so called intellectual centers) since the computer technology is the basis of modern control systems. One of the possible solutions to the development of highly reliable control computers is the practical implementation of the provisions of the theory of structural stability, which involves the practical solution of two main tasks - this is the task of functional adaptation and the preceding task of functional diagnostics. This article deals with the issues on the assessment of computational complexity of the implementation of the adaptation process of structural and sustainable control computer. The criteria of computational complexity are the characteristics of additionally attracted resources, such as the temporal characteristics of the adaptation process and the characteristics of the involved amount of memory resources of the control computer involved in the implementation of the adaptation process algorithms.
Samoshina, Anna, Promyslov, Vitaly, Kamesheva, Saniya, Galin, Rinat.  2020.  Application of Cloud Modeling Technologies in Ensuring Cyber Security of APCS. 2020 13th International Conference "Management of Large-Scale System Development" (MLSD). :1–5.
This paper describes the development of a module for calculating security zones in the cloud service of APCS modeling. A mathematical model based on graph theory is used. This allows you to describe access relationships between objects and security policy subjects. A comparative analysis of algorithms for traversing graph vertices is performed in order to select a suitable method for allocating security zones. The implemented algorithm for calculating security zones was added to the cloud service omole.ws.
2021-03-30
Baybulatov, A. A., Promyslov, V. G..  2020.  On a Deterministic Approach to Solving Industrial Control System Problems. 2020 International Russian Automation Conference (RusAutoCon). :115—120.

Since remote ages, queues and delays have been a rather exasperating reality of human daily life. Today, they pursue us everywhere: in technical, social, socio-technical, and even control systems, dramatically deteriorating their performance. In this variety, it is the computer systems that are sure to cause the growing anxiety in our digital era. Although for our everyday Internet surfing, experiencing long-lasting and annoying delays is an unpleasant but not dangerous situation, for industrial control systems, especially those dealing with critical infrastructures, such behavior is unacceptable. The article presents a deterministic approach to solving some digital control system problems associated with delays and backlogs. Being based on Network calculus, in contrast to statistical methods of Queuing theory, it provides worst-case results, which are eminently desirable for critical infrastructures. The article covers the basics of a theory of deterministic queuing systems Network calculus, its evolution regarding the relationship between backlog bound and delay, and a technique for handling empirical data. The problems being solved by the deterministic approach: standard calculation of network performance measures, estimation of database maximum updating time, and cybersecurity assessment including such issues as the CIA triad representation, operational technology influence, and availability understanding focusing on its correlation with a delay are thoroughly discussed as well.

2020-12-15
Laso, P. Merino, Brosset, D., Giraud, M..  2018.  Secured Architecture for Unmanned Surface Vehicle Fleets Management and Control. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :373—375.

Cyber-physical systems contribute to building new infrastructure in the modern world. These systems help realize missions reducing costs and risks. The seas being a harsh and dangerous environment are a perfect application of them. Unmanned Surface vehicles (USV) allow realizing normal and new tasks reducing risk and cost i.e. surveillance, water cleaning, environmental monitoring or search and rescue operations. Also, as they are unmanned vehicles they can extend missions to unpleasing and risky weather conditions. The novelty of these systems makes that new command and control platforms need to be developed. In this paper, we describe an implemented architecture with 5 separated levels. This structure increases security by defining roles and by limiting information exchanges.

2020-07-16
Xiao, Jiaping, Jiang, Jianchun.  2018.  Real-time Security Evaluation for Unmanned Aircraft Systems under Data-driven Attacks*. 2018 13th World Congress on Intelligent Control and Automation (WCICA). :842—847.

With rapid advances in the fields of the Internet of Things and autonomous systems, the network security of cyber-physical systems(CPS) becomes more and more important. This paper focuses on the real-time security evaluation for unmanned aircraft systems which are cyber-physical systems relying on information communication and control system to achieve autonomous decision making. Our problem formulation is motivated by scenarios involving autonomous unmanned aerial vehicles(UAVs) working continuously under data-driven attacks when in an open, uncertain, and even hostile environment. Firstly, we investigated the state estimation method in CPS integrated with data-driven attacks model, and then proposed a real-time security scoring algorithm to evaluate the security condition of unmanned aircraft systems under different threat patterns, considering the vulnerability of the systems and consequences brought by data attacks. Our simulation in a UAV illustrated the efficiency and reliability of the algorithm.

2020-06-26
Polyakov, Dmitry, Eliseev, Aleksey, Moiseeva, Maria, Alekseev, Vladimir, Kolegov, Konstantin.  2019.  The Model and Algorithm for Ensuring the Survivability of Control Systems of Dynamic Objects in Conditions of Uncertainty. 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA). :41—44.
In the article the problem of survivability evaluation of control systems is considered. Control system is presented as a graph with edges that formalize minimal control systems consist of receiver, transmitter and a communication line connecting them. Based on the assumption that the survivability of minimal control systems is known, the mathematical model of survivability evaluation of not minimal control systems based on fuzzy logic is offered.
2020-04-13
Phan, Trung V., Islam, Syed Tasnimul, Nguyen, Tri Gia, Bauschert, Thomas.  2019.  Q-DATA: Enhanced Traffic Flow Monitoring in Software-Defined Networks applying Q-learning. 2019 15th International Conference on Network and Service Management (CNSM). :1–9.
Software-Defined Networking (SDN) introduces a centralized network control and management by separating the data plane from the control plane which facilitates traffic flow monitoring, security analysis and policy formulation. However, it is challenging to choose a proper degree of traffic flow handling granularity while proactively protecting forwarding devices from getting overloaded. In this paper, we propose a novel traffic flow matching control framework called Q-DATA that applies reinforcement learning in order to enhance the traffic flow monitoring performance in SDN based networks and prevent traffic forwarding performance degradation. We first describe and analyse an SDN-based traffic flow matching control system that applies a reinforcement learning approach based on Q-learning algorithm in order to maximize the traffic flow granularity. It also considers the forwarding performance status of the SDN switches derived from a Support Vector Machine based algorithm. Next, we outline the Q-DATA framework that incorporates the optimal traffic flow matching policy derived from the traffic flow matching control system to efficiently provide the most detailed traffic flow information that other mechanisms require. Our novel approach is realized as a REST SDN application and evaluated in an SDN environment. Through comprehensive experiments, the results show that-compared to the default behavior of common SDN controllers and to our previous DATA mechanism-the new Q-DATA framework yields a remarkable improvement in terms of traffic forwarding performance degradation protection of SDN switches while still providing the most detailed traffic flow information on demand.
2019-05-01
Sowah, R., Ofoli, A., Koumadi, K., Osae, G., Nortey, G., Bempong, A. M., Agyarkwa, B., Apeadu, K. O..  2018.  Design and Implementation of a Fire Detection andControl System with Enhanced Security and Safety for Automobiles Using Neuro-Fuzzy Logic. 2018 IEEE 7th International Conference on Adaptive Science Technology (ICAST). :1-8.

Automobiles provide comfort and mobility to owners. While they make life more meaningful they also pose challenges and risks in their safety and security mechanisms. Some modern automobiles are equipped with anti-theft systems and enhanced safety measures to safeguard its drivers. But at times, these mechanisms for safety and secured operation of automobiles are insufficient due to various mechanisms used by intruders and car thieves to defeat them. Drunk drivers cause accidents on our roads and thus the need to safeguard the driver when he is intoxicated and render the car to be incapable of being driven. These issues merit an integrated approach to safety and security of automobiles. In the light of these challenges, an integrated microcontroller-based hardware and software system for safety and security of automobiles to be fixed into existing vehicle architecture, was designed, developed and deployed. The system submodules are: (1) Two-step ignition for automobiles, namely: (a) biometric ignition and (b) alcohol detection with engine control, (2) Global Positioning System (GPS) based vehicle tracking and (3) Multisensor-based fire detection using neuro-fuzzy logic. All submodules of the system were implemented using one microcontroller, the Arduino Mega 2560, as the central control unit. The microcontroller was programmed using C++11. The developed system performed quite well with the tests performed on it. Given the right conditions, the alcohol detection subsystem operated with a 92% efficiency. The biometric ignition subsystem operated with about 80% efficiency. The fire detection subsystem operated with a 95% efficiency in locations registered with the neuro-fuzzy system. The vehicle tracking subsystem operated with an efficiency of 90%.

2017-05-19
Ahmed, Irfan, Roussev, Vassil, Johnson, William, Senthivel, Saranyan, Sudhakaran, Sneha.  2016.  A SCADA System Testbed for Cybersecurity and Forensic Research and Pedagogy. Proceedings of the 2Nd Annual Industrial Control System Security Workshop. :1–9.

This paper presents a supervisory control and data acquisition (SCADA) testbed recently built at the University of New Orleans. The testbed consists of models of three industrial physical processes: a gas pipeline, a power transmission and distribution system, and a wastewater treatment plant–these systems are fully-functional and implemented at small-scale. It utilizes real-world industrial equipment such as transformers, programmable logic controllers (PLC), aerators, etc., bringing it closer to modeling real-world SCADA systems. Sensors, actuators, and PLCs are deployed at each physical process system for local control and monitoring, and the PLCs are also connected to a computer running human-machine interface (HMI) software for monitoring the status of the physical processes. The testbed is a useful resource for cybersecurity research, forensic research, and education on different aspects of SCADA systems such as PLC programming, protocol analysis, and demonstration of cyber attacks.