Biblio
Demand response has emerged as one of the most promising methods for the deployment of sustainable energy systems. Attempts to democratize demand response and establish programs for residential consumers have run into scalability issues and risks of leaking sensitive consumer data. In this work, we propose a privacy-friendly, incentive-based demand response market, where consumers offer their flexibility to utilities in exchange for a financial compensation. Consumers submit encrypted offer which are aggregated using Computation Over Encrypted Data to ensure consumer privacy and the scalability of the approach. The optimal allocation of flexibility is then determined via double-auctions, along with the optimal consumption schedule for the users with respect to the day-ahead electricity prices, thus also shielding participants from high electricity prices. A case study is presented to show the effectiveness of the proposed approach.
Secure multi-party computation(SMPC) is an important research field in cryptography, secure multi-party computation has a wide range of applications in practice. Accordingly, information security issues have arisen. Aiming at security issues in Secure multi-party computation, we consider that semi-honest participants have malicious operations such as collusion in the process of information interaction, gaining an information advantage over honest parties through collusion which leads to deviations in the security of the protocol. To solve this problem, we combine information entropy to propose an n-round information exchange protocol, in which each participant broadcasts a relevant information value in each round without revealing additional information. Through the change of the uncertainty of the correct result value in each round of interactive information, each participant cannot determine the correct result value before the end of the protocol. Security analysis shows that our protocol guarantees the security of the output obtained by the participants after the completion of the protocol.
Due to privacy threats associated with computation of outsourced data, processing data on the encrypted domain has become a viable alternative. Secure computation of encrypted data is relevant for analysing datasets in areas (such as genome processing, private data aggregation, cloud computations) that require basic arithmetic operations. Performing division operation over-all encrypted inputs has not been achieved using homomorphic schemes in non-interactive modes. In interactive protocols, the cost of obtaining an encrypted quotient (from encrypted values) is computationally expensive. To the best of our knowledge, existing homomorphic solutions on encrypted division are often relaxed to consider public or private divisor. We acknowledge that there are other techniques such as secret sharing and garbled circuits adopted to compute secure division, but we are interested in homomorphic solutions. We propose an efficient and interactive two-party protocol that computes the fixed-point quotient of two encrypted inputs, using an efficient and secure comparison protocol as a sub-protocol. Our proposal provides a computational advantage, with a linear complexity in the digit precision of the quotient. We provide proof of security in the universally composable framework and complexity analyses. We present experimental results for two cryptosystem implementations in order to compare performance. An efficient prototype of our protocol is implemented using additive homomorphic scheme (Paillier), whereas a non-efficient fully-homomorphic scheme (BGV) version is equally presented as a proof of concept and analyses of our proposal.
The privacy of information is an increasing concern of software applications users. This concern was caused by attacks to cloud services over the last few years, that have leaked confidential information such as passwords, emails and even private pictures. Once the information is leaked, the users and software applications are powerless to contain the spread of information and its misuse. With databases as a central component of applications that store almost all of their data, they are one of the most common targets of attacks. However, typical deployments of databases do not leverage security mechanisms to stop attacks and do not apply cryptographic schemes to protect data. This issue has been tackled by multiple secure databases that provide trade-offs between security, query capabilities and performance. Despite providing stronger security guarantees, the proposed solutions still entrust their data to a single entity that can be corrupted or hacked. Secret sharing can solve this problem by dividing data in multiple secrets and storing each secret at a different location. The division is done in such a way that if one location is hacked, no information can be leaked. Depending on the protocols used to divide data, functions can be computed over this data through secure protocols that do not disclose information or actually know which values are being calculated. We propose a SQL database prototype capable of offering a trade-off between security and query latency by using a different secure protocol. An evaluation of the protocols is also performed, showing that our most relaxed protocol has an improvement of 5+ on the query latency time over the original protocol.
Oblivious Random Access Machine (ORAM) enables a client to access her data without leaking her access patterns. Existing client-efficient ORAMs either achieve O(log N) client-server communication blowup without heavy computation, or O(1) blowup but with expensive homomorphic encryptions. It has been shown that O(log N) bandwidth blowup might not be practical for certain applications, while schemes with O(1) communication blowup incur even more delay due to costly homomorphic operations. In this paper, we propose a new distributed ORAM scheme referred to as Shamir Secret Sharing ORAM (S3ORAM), which achieves O(1) client-server bandwidth blowup and O(1) blocks of client storage without relying on costly partial homomorphic encryptions. S3ORAM harnesses Shamir Secret Sharing, tree-based ORAM structure and a secure multi-party multiplication protocol to eliminate costly homomorphic operations and, therefore, achieves O(1) client-server bandwidth blowup with a high computational efficiency. We conducted comprehensive experiments to assess the performance of S3ORAM and its counterparts on actual cloud environments, and showed that S3ORAM achieves three orders of magnitude lower end-to-end delay compared to alternatives with O(1) client communication blowup (Onion-ORAM), while it is one order of magnitude faster than Path-ORAM for a network with a moderate bandwidth quality. We have released the implementation of S3ORAM for further improvement and adaptation.
Polynomial masking is a glitch-resistant and higher-order masking scheme based upon Shamir's secret sharing scheme and multi-party computation protocols. Polynomial masking was first introduced at CHES 2011, while a 1st-order implementation of the AES S-box on FPGA was presented at CHES 2013. In this latter work, the authors showed a 2nd-order univariate leakage by side-channel collision analysis on a tuned measurement setup. This negative result motivates the need to evaluate the performance, area-costs, and security margins of combined \shuffled\ and higher-order polynomially masking schemes to counteract trivial univariate leakages. In this work, we provide the following contributions: first, we introduce additional principles for the selection of efficient addition chains, which allow for more compact and faster implementations of cryptographic S-boxes. Our 1st-order AES S-box implementation requires approximately 27% less registers, 20% less clock cycles, and 5% less random bits than the CHES 2013 implementation. Then, we propose a lightweight shuffling countermeasure, which inherently applies to polynomial masking schemes and effectively enhances their univariate security at negligible area expenses. Finally, we present the design of a \combined\ \shuffled\ \and\ higher-order polynomially masked AES S-box in hardware, while providing ASIC synthesis and side-channel analysis results in the Electro-Magnetic (EM) domain.
When a group of individuals and organizations wish to compute a stable matching–-for example, when medical students are matched to medical residency programs–-they often outsource the computation to a trusted arbiter in order to preserve the privacy of participants' preferences. Secure multi-party computation offers the possibility of private matching processes that do not rely on any common trusted third party. However, stable matching algorithms have previously been considered infeasible for execution in a secure multi-party context on non-trivial inputs because they are computationally intensive and involve complex data-dependent memory access patterns. We adapt the classic Gale-Shapley algorithm for use in such a context, and show experimentally that our modifications yield a lower asymptotic complexity and more than an order of magnitude in practical cost improvement over previous techniques. Our main improvements stem from designing new oblivious data structures that exploit the properties of the matching algorithms. We apply a similar strategy to scale the Roth-Peranson instability chaining algorithm, currently in use by the National Resident Matching Program. The resulting protocol is efficient enough to be useful at the scale required for matching medical residents nationwide, taking just over 18 hours to complete an execution simulating the 2016 national resident match with more than 35,000 participants and 30,000 residency slots.
Polynomial masking is a glitch-resistant and higher-order masking scheme based upon Shamir's secret sharing scheme and multi-party computation protocols. Polynomial masking was first introduced at CHES 2011, while a 1st-order implementation of the AES S-box on FPGA was presented at CHES 2013. In this latter work, the authors showed a 2nd-order univariate leakage by side-channel collision analysis on a tuned measurement setup. This negative result motivates the need to evaluate the performance, area-costs, and security margins of combined \shuffled\ and higher-order polynomially masking schemes to counteract trivial univariate leakages. In this work, we provide the following contributions: first, we introduce additional principles for the selection of efficient addition chains, which allow for more compact and faster implementations of cryptographic S-boxes. Our 1st-order AES S-box implementation requires approximately 27% less registers, 20% less clock cycles, and 5% less random bits than the CHES 2013 implementation. Then, we propose a lightweight shuffling countermeasure, which inherently applies to polynomial masking schemes and effectively enhances their univariate security at negligible area expenses. Finally, we present the design of a \combined\ \shuffled\ \and\ higher-order polynomially masked AES S-box in hardware, while providing ASIC synthesis and side-channel analysis results in the Electro-Magnetic (EM) domain.
I will explain the linkage between threshold implementation masking schemes and multi-party computation. The basic principles that need to be taken from multi-party computation will be presented, as well as some basic protocols. The different natures of the resources and threat models between the two different applications of secret sharing will also be covered.
We consider the task of secure multi-party computation of arithmetic circuits over a finite field. Unlike Boolean circuits, arithmetic circuits allow natural computations on integers to be expressed easily and efficiently. In the strongest setting of malicious security with a dishonest majority –- where any number of parties may deviate arbitrarily from the protocol –- most existing protocols require expensive public-key cryptography for each multiplication in the preprocessing stage of the protocol, which leads to a high total cost. We present a new protocol that overcomes this limitation by using oblivious transfer to perform secure multiplications in general finite fields with reduced communication and computation. Our protocol is based on an arithmetic view of oblivious transfer, with careful consistency checks and other techniques to obtain malicious security at a cost of less than 6 times that of semi-honest security. We describe a highly optimized implementation together with experimental results for up to five parties. By making extensive use of parallelism and SSE instructions, we improve upon previous runtimes for MPC over arithmetic circuits by more than 200 times.