Biblio
Over the past decade, distributed CSMA, which forms the basis for WiFi, has been deployed ubiquitously to provide seamless and high-speed mobile internet access. However, distributed CSMA might not be ideal for future IoT/M2M applications, where the density of connected devices/sensors/controllers is expected to be orders of magnitude higher than that in present wireless networks. In such high-density networks, the overhead associated with completely distributed MAC protocols will become a bottleneck. Moreover, IoT communications are likely to have strict QoS requirements, for which the `best-effort' scheduling by present WiFi networks may be unsuitable. This calls for a clean-slate redesign of the wireless MAC taking into account the requirements for future IoT/M2M networks. In this paper, we propose a reservation-based (for minimal overhead) wireless MAC designed specifically with IoT/M2M applications in mind.
Security challenges present in Machine-to-Machine Communication (M2M-C) and big data paradigm are fundamentally different from conventional network security challenges. In M2M-C paradigms, “Trust” is a vital constituent of security solutions that address security threats and for such solutions,it is important to quantify and evaluate the amount of trust in the information and its source. In this work, we focus on Machine Learning (ML) Based Trust (MLBT) evaluation model for detecting malicious activities in a vehicular Based M2M-C (VBM2M-C) network. In particular, we present an Entropy Based Feature Engineering (EBFE) coupled Extreme Gradient Boosting (XGBoost) model which is optimized with Binary Particle Swarm optimization technique. Based on three performance metrics, i.e., Accuracy Rate (AR), True Positive Rate (TPR), False Positive Rate (FPR), the effectiveness of the proposed method is evaluated in comparison to the state-of-the-art ensemble models, such as XGBoost and Random Forest. The simulation results demonstrates the superiority of the proposed model with approximately 10% improvement in accuracy, TPR and FPR, with reference to the attacker density of 30% compared with the start-of-the-art algorithms.
This research in progress paper describes the role of cyber security measures undertaken in an ICT system for integrating electric storage technologies into the grid. To do so, it defines security requirements for a communications gateway and gives detailed information and hands-on configuration advice on node and communication line security, data storage, coping with backend M2M communications protocols and examines privacy issues. The presented research paves the road for developing secure smart energy communications devices that allow enhancing energy efficiency. The described measures are implemented in an actual gateway device within the HORIZON 2020 project STORY, which aims at developing new ways to use storage and demonstrating these on six different demonstration sites.
Friendly jamming is a physical layer security technique that utilizes extra available nodes to jam any eavesdroppers. This paper considers the use of additional available nodes as friendly jammers in order to improve the security performance of a route through a wireless area network. One of the unresolved technical challenges is the combining of security metrics with typical service quality metrics. In this context, this paper considers the problem of routing through a D2D network while jointly minimizing the secrecy outage probability (SOP) and connection outage probability (COP), using friendly jamming to improve the SOP of each link. The jamming powers are determined to place nulls at friendly receivers while maximizing the power to eavesdroppers. Then the route metrics are derived, and the problem is framed as a convex optimization problem. We also consider that not all network users equally value SOP and COP, and so introduce an auxiliary variable to tune the optimization between the two metrics.
Simple connectivity and data requirements together with high lifetime of battery are the main issues for the machine-to-machine (M2M) communications. 3GPP focuses on three main licensed standardizations based on Long Term Evolution (LTE), GSM and clean-slate technologies. The paper considers the last one and proposes a modified slotted-Aloha method to increase the capability of supporting a massive number of low-throughput devices. The proposed method increases the access rate of users belonging to each class considered in the clean-slate standard and consequently the total throughput offered by the system. To derive the mean access rate per class, we use the Markov chain approach and simulation results are provided for scenarios with different data rate and also in terms of cell average delay.
Although wireless communication is integral to our daily lives, there are numerous crucial questions related to coverage, energy consumption, reliability, and security when it comes to industrial deployment. The authors provide an overview of wireless machine-to-machine (M2M) technologies in the context of a smart factory.