Visible to the public Biblio

Filters: Keyword is relational database security  [Clear All Filters]
2018-05-24
Maraj, A., Rogova, E., Jakupi, G., Grajqevci, X..  2017.  Testing Techniques and Analysis of SQL Injection Attacks. 2017 2nd International Conference on Knowledge Engineering and Applications (ICKEA). :55–59.

It is a well-known fact that nowadays access to sensitive information is being performed through the use of a three-tier-architecture. Web applications have become a handy interface between users and data. As database-driven web applications are being used more and more every day, web applications are being seen as a good target for attackers with the aim of accessing sensitive data. If an organization fails to deploy effective data protection systems, they might be open to various attacks. Governmental organizations, in particular, should think beyond traditional security policies in order to achieve proper data protection. It is, therefore, imperative to perform security testing and make sure that there are no holes in the system, before an attack happens. One of the most commonly used web application attacks is by insertion of an SQL query from the client side of the application. This attack is called SQL Injection. Since an SQL Injection vulnerability could possibly affect any website or web application that makes use of an SQL-based database, the vulnerability is one of the oldest, most prevalent and most dangerous of web application vulnerabilities. To overcome the SQL injection problems, there is a need to use different security systems. In this paper, we will use 3 different scenarios for testing security systems. Using Penetration testing technique, we will try to find out which is the best solution for protecting sensitive data within the government network of Kosovo.

Sallam, A., Bertino, E..  2017.  Detection of Temporal Insider Threats to Relational Databases. 2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC). :406–415.

The mitigation of insider threats against databases is a challenging problem as insiders often have legitimate access privileges to sensitive data. Therefore, conventional security mechanisms, such as authentication and access control, may be insufficient for the protection of databases against insider threats and need to be complemented with techniques that support real-time detection of access anomalies. The existing real-time anomaly detection techniques consider anomalies in references to the database entities and the amounts of accessed data. However, they are unable to track the access frequencies. According to recent security reports, an increase in the access frequency by an insider is an indicator of a potential data misuse and may be the result of malicious intents for stealing or corrupting the data. In this paper, we propose techniques for tracking users' access frequencies and detecting anomalous related activities in real-time. We present detailed algorithms for constructing accurate profiles that describe the access patterns of the database users and for matching subsequent accesses by these users to the profiles. Our methods report and log mismatches as anomalies that may need further investigation. We evaluated our techniques on the OLTP-Benchmark. The results of the evaluation indicate that our techniques are very effective in the detection of anomalies.

Pallas, Frank, Bermbach, David, Müller, Steffen, Tai, Stefan.  2017.  Evidence-Based Security Configurations for Cloud Datastores. Proceedings of the Symposium on Applied Computing. :424–430.

Cloud systems offer a diversity of security mechanisms with potentially complex configuration options. So far, security engineering has focused on achievable security levels, but not on the costs associated with a specific security mechanism and its configuration. Through a series of experiments with a variety of cloud datastores conducted over the last years, we gained substantial knowledge on how one desired quality like security can have a significant impact on other system qualities like performance. In this paper, we report on select findings related to security-performance trade-offs for three prominent cloud datastores, focusing on data in transit encryption, and propose a simple, structured approach for making trade-off decisions based on factual evidence gained through experimentation. Our approach allows to rationally reason about security trade-offs.

Kul, Gokhan, Upadhyaya, Shambhu, Hughes, Andrew.  2017.  Complexity of Insider Attacks to Databases. Proceedings of the 2017 International Workshop on Managing Insider Security Threats. :25–32.

Insider attacks are one of the most dangerous threats to an organization. Unfortunately, they are very difficult to foresee, detect, and defend against due to the trust and responsibilities placed on the employees. In this paper, we first define the notion of user intent, and construct a model for the most common threat scenario used in the literature that poses a very high risk for sensitive data stored in the organization's database. We show that the complexity of identifying pseudo-intents of a user is coNP-Complete in this domain, and launching a harvester insider attack within the boundaries of the defined threat model takes linear time while a targeted threat model is an NP-Complete problem. We also discuss about the general defense mechanisms against the modeled threats, and show that countering against the harvester insider attack model takes quadratic time while countering against the targeted insider attack model can take linear to quadratic time depending on the strategy chosen. Finally, we analyze the adversarial behavior, and show that launching an attack with minimum risk is also an NP-Complete problem.

Huyn, Joojay.  2017.  A Scalable Real-Time Framework for DDoS Traffic Monitoring and Characterization. Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies. :265–266.

Volumetric DDoS attacks continue to inflict serious damage. Many proposed defenses for mitigating such attacks assume that a monitoring system has already detected the attack. However, many proposed DDoS monitoring systems do not focus on efficiently analyzing high volume network traffic to provide important characterizations of the attack in real-time to downstream traffic filtering systems. We propose a scalable real-time framework for an effective volumetric DDoS monitoring system that leverages modern big data technologies for streaming analytics of high volume network traffic to accurately detect and characterize attacks.

Bollwein, Ferdinand, Wiese, Lena.  2017.  Separation of Duties for Multiple Relations in Cloud Databases As an Optimization Problem. Proceedings of the 21st International Database Engineering & Applications Symposium. :98–107.

Confidentiality concerns are important in the context of cloud databases. In this paper, the technique of vertical fragmentation is explored to break sensitive associations between columns of several database tables according to confidentiality constraints. By storing insensitive portions of the database at different non-communicating servers it is possible to overcome confidentiality concerns. In addition, visibility constraints and data dependencies are supported. Moreover, to provide some control over the distribution of columns among different servers, novel closeness constraints are introduced. Finding confidentiality-preserving fragmentations is studied in the context of mathematical optimization and a corresponding integer linear program formulation is presented. Benchmarks were performed to evaluate the suitability of our approach.

Pontes, Rogério, Pinto, Mário, Barbosa, Manuel, Vila\c ca, Ricardo, Matos, Miguel, Oliveira, Rui.  2017.  Performance Trade-Offs on a Secure Multi-Party Relational Database. Proceedings of the Symposium on Applied Computing. :456–461.

The privacy of information is an increasing concern of software applications users. This concern was caused by attacks to cloud services over the last few years, that have leaked confidential information such as passwords, emails and even private pictures. Once the information is leaked, the users and software applications are powerless to contain the spread of information and its misuse. With databases as a central component of applications that store almost all of their data, they are one of the most common targets of attacks. However, typical deployments of databases do not leverage security mechanisms to stop attacks and do not apply cryptographic schemes to protect data. This issue has been tackled by multiple secure databases that provide trade-offs between security, query capabilities and performance. Despite providing stronger security guarantees, the proposed solutions still entrust their data to a single entity that can be corrupted or hacked. Secret sharing can solve this problem by dividing data in multiple secrets and storing each secret at a different location. The division is done in such a way that if one location is hacked, no information can be leaked. Depending on the protocols used to divide data, functions can be computed over this data through secure protocols that do not disclose information or actually know which values are being calculated. We propose a SQL database prototype capable of offering a trade-off between security and query latency by using a different secure protocol. An evaluation of the protocols is also performed, showing that our most relaxed protocol has an improvement of 5+ on the query latency time over the original protocol.

2018-02-14
Kim, Kee Sung, Kim, Minkyu, Lee, Dongsoo, Park, Je Hong, Kim, Woo-Hwan.  2017.  Forward Secure Dynamic Searchable Symmetric Encryption with Efficient Updates. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1449–1463.

The recently proposed file-injection type attacks are highlighting the importance of forward security in dynamic searchable symmetric encryption (DSSE). Forward security enables to thwart those attacks by hiding the information about the newly added files matching a previous search query. However, there are still only a few DSSE schemes that provide forward security, and they have factors that hinder efficiency. In particular, all of these schemes do not support actual data deletion, which increments both storage space and computational complexity. In this paper, we design and implement a forward secure DSSE scheme with optimal search and update complexity, for both computation and communication point of view. As a starting point, we propose a new, simple, theoretical data structure, called dual dictionary that can take advantage of both the inverted and the forward indexes at the same time. This data structure allows to delete data explicitly and in real time, which greatly improves efficiency compared to previous works. In addition, our scheme provides forward security by encrypting the newly added data with fresh keys not related with the previous search tokens. We implemented our scheme for Enron email and Wikipedia datasets and measured its performance. The comparison with Sophos shows that our scheme is very efficient in practice, for both searches and updates in dynamic environments.

2018-01-23
Ślezak, D., Chadzyńska-Krasowska, A., Holland, J., Synak, P., Glick, R., Perkowski, M..  2017.  Scalable cyber-security analytics with a new summary-based approximate query engine. 2017 IEEE International Conference on Big Data (Big Data). :1840–1849.

A growing need for scalable solutions for both machine learning and interactive analytics exists in the area of cyber-security. Machine learning aims at segmentation and classification of log events, which leads towards optimization of the threat monitoring processes. The tools for interactive analytics are required to resolve the uncertain cases, whereby machine learning algorithms are not able to provide a convincing outcome and human expertise is necessary. In this paper we focus on a case study of a security operations platform, whereby typical layers of information processing are integrated with a new database engine dedicated to approximate analytics. The engine makes it possible for the security experts to query massive log event data sets in a standard relational style. The query outputs are received orders of magnitude faster than any of the existing database solutions running with comparable resources and, in addition, they are sufficiently accurate to make the right decisions about suspicious corner cases. The engine internals are driven by the principles of information granulation and summary-based processing. They also refer to the ideas of data quantization, approximate computing, rough sets and probability propagation. In the paper we study how the engine's parameters can influence its performance within the considered environment. In addition to the results of experiments conducted on large data sets, we also discuss some of our high level design decisions including the choice of an approximate query result accuracy measure that should reflect the specifics of the considered threat monitoring operations.

2017-12-28
Shih, M. H., Chang, J. M..  2017.  Design and analysis of high performance crypt-NoSQL. 2017 IEEE Conference on Dependable and Secure Computing. :52–59.

NoSQL databases have become popular with enterprises due to their scalable and flexible storage management of big data. Nevertheless, their popularity also brings up security concerns. Most NoSQL databases lacked secure data encryption, relying on developers to implement cryptographic methods at application level or middleware layer as a wrapper around the database. While this approach protects the integrity of data, it increases the difficulty of executing queries. We were motivated to design a system that not only provides NoSQL databases with the necessary data security, but also supports the execution of query over encrypted data. Furthermore, how to exploit the distributed fashion of NoSQL databases to deliver high performance and scalability with massive client accesses is another important challenge. In this research, we introduce Crypt-NoSQL, the first prototype to support execution of query over encrypted data on NoSQL databases with high performance. Three different models of Crypt-NoSQL were proposed and performance was evaluated with Yahoo! Cloud Service Benchmark (YCSB) considering an enormous number of clients. Our experimental results show that Crypt-NoSQL can process queries over encrypted data with high performance and scalability. A guidance of establishing service level agreement (SLA) for Crypt-NoSQL as a cloud service is also proposed.

2017-05-30
Khalil, Issa, Yu, Ting, Guan, Bei.  2016.  Discovering Malicious Domains Through Passive DNS Data Graph Analysis. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :663–674.

Malicious domains are key components to a variety of cyber attacks. Several recent techniques are proposed to identify malicious domains through analysis of DNS data. The general approach is to build classifiers based on DNS-related local domain features. One potential problem is that many local features, e.g., domain name patterns and temporal patterns, tend to be not robust. Attackers could easily alter these features to evade detection without affecting much their attack capabilities. In this paper, we take a complementary approach. Instead of focusing on local features, we propose to discover and analyze global associations among domains. The key challenges are (1) to build meaningful associations among domains; and (2) to use these associations to reason about the potential maliciousness of domains. For the first challenge, we take advantage of the modus operandi of attackers. To avoid detection, malicious domains exhibit dynamic behavior by, for example, frequently changing the malicious domain-IP resolutions and creating new domains. This makes it very likely for attackers to reuse resources. It is indeed commonly observed that over a period of time multiple malicious domains are hosted on the same IPs and multiple IPs host the same malicious domains, which creates intrinsic association among them. For the second challenge, we develop a graph-based inference technique over associated domains. Our approach is based on the intuition that a domain having strong associations with known malicious domains is likely to be malicious. Carefully established associations enable the discovery of a large set of new malicious domains using a very small set of previously known malicious ones. Our experiments over a public passive DNS database show that the proposed technique can achieve high true positive rates (over 95%) while maintaining low false positive rates (less than 0.5%). Further, even with a small set of known malicious domains (a couple of hundreds), our technique can discover a large set of potential malicious domains (in the scale of up to tens of thousands).

Munaiah, Nuthan, Meneely, Andrew.  2016.  Vulnerability Severity Scoring and Bounties: Why the Disconnect? Proceedings of the 2Nd International Workshop on Software Analytics. :8–14.

The Common Vulnerability Scoring System (CVSS) is the de facto standard for vulnerability severity measurement today and is crucial in the analytics driving software fortification. Required by the U.S. National Vulnerability Database, over 75,000 vulnerabilities have been scored using CVSS. We compare how the CVSS correlates with another, closely-related measure of security impact: bounties. Recent economic studies of vulnerability disclosure processes show a clear relationship between black market value and bounty payments. We analyzed the CVSS scores and bounty awarded for 703 vulnerabilities across 24 products. We found a weak (Spearman’s ρ = 0.34) correlation between CVSS scores and bounties, with CVSS being more likely to underestimate bounty. We believe such a negative result is a cause for concern. We investigated why these measurements were so discordant by (a) analyzing the individual questions of CVSS with respect to bounties and (b) conducting a qualitative study to find the similarities and differences between CVSS and the publicly-available criteria for awarding bounties. Among our findings were that the bounty criteria were more explicit about code execution and privilege escalation whereas CVSS makes no explicit mention of those. We also found that bounty valuations are evaluated solely by project maintainers, whereas CVSS has little provenance in practice.

Henze, Martin, Hiller, Jens, Schmerling, Sascha, Ziegeldorf, Jan Henrik, Wehrle, Klaus.  2016.  CPPL: Compact Privacy Policy Language. Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society. :99–110.

Recent technology shifts such as cloud computing, the Internet of Things, and big data lead to a significant transfer of sensitive data out of trusted edge networks. To counter resulting privacy concerns, we must ensure that this sensitive data is not inadvertently forwarded to third-parties, used for unintended purposes, or handled and stored in violation of legal requirements. Related work proposes to solve this challenge by annotating data with privacy policies before data leaves the control sphere of its owner. However, we find that existing privacy policy languages are either not flexible enough or require excessive processing, storage, or bandwidth resources which prevents their widespread deployment. To fill this gap, we propose CPPL, a Compact Privacy Policy Language which compresses privacy policies by taking advantage of flexibly specifiable domain knowledge. Our evaluation shows that CPPL reduces policy sizes by two orders of magnitude compared to related work and can check several thousand of policies per second. This allows for individual per-data item policies in the context of cloud computing, the Internet of Things, and big data.

Lewi, Kevin, Wu, David J..  2016.  Order-Revealing Encryption: New Constructions, Applications, and Lower Bounds. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1167–1178.

In the last few years, there has been significant interest in developing methods to search over encrypted data. In the case of range queries, a simple solution is to encrypt the contents of the database using an order-preserving encryption (OPE) scheme (i.e., an encryption scheme that supports comparisons over encrypted values). However, Naveed et al. (CCS 2015) recently showed that OPE-encrypted databases are extremely vulnerable to "inference attacks." In this work, we consider a related primitive called order-revealing encryption (ORE), which is a generalization of OPE that allows for stronger security. We begin by constructing a new ORE scheme for small message spaces which achieves the "best-possible" notion of security for ORE. Next, we introduce a "domain extension" technique and apply it to our small-message-space ORE. While our domain-extension technique does incur a loss in security, the resulting ORE scheme we obtain is more secure than all existing (stateless and non-interactive) OPE and ORE schemes which are practical. All of our constructions rely only on symmetric primitives. As part of our analysis, we also give a tight lower bound for OPE and show that no efficient OPE scheme can satisfy best-possible security if the message space contains just three messages. Thus, achieving strong notions of security for even small message spaces requires moving beyond OPE. Finally, we examine the properties of our new ORE scheme and show how to use it to construct an efficient range query protocol that is robust against the inference attacks of Naveed et al. We also give a full implementation of our new ORE scheme, and show that not only is our scheme more secure than existing OPE schemes, it is also faster: encrypting a 32-bit integer requires just 55 microseconds, which is more than 65 times faster than existing OPE schemes.

Boyle, Elette, Gilboa, Niv, Ishai, Yuval.  2016.  Function Secret Sharing: Improvements and Extensions. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1292–1303.

Function Secret Sharing (FSS), introduced by Boyle et al. (Eurocrypt 2015), provides a way for additively secret-sharing a function from a given function family F. More concretely, an m-party FSS scheme splits a function f : \0, 1\n -textgreater G, for some abelian group G, into functions f1,...,fm, described by keys k1,...,km, such that f = f1 + ... + fm and every strict subset of the keys hides f. A Distributed Point Function (DPF) is a special case where F is the family of point functions, namely functions f\_\a,b\ that evaluate to b on the input a and to 0 on all other inputs. FSS schemes are useful for applications that involve privately reading from or writing to distributed databases while minimizing the amount of communication. These include different flavors of private information retrieval (PIR), as well as a recent application of DPF for large-scale anonymous messaging. We improve and extend previous results in several ways: * Simplified FSS constructions. We introduce a tensoring operation for FSS which is used to obtain a conceptually simpler derivation of previous constructions and present our new constructions. * Improved 2-party DPF. We reduce the key size of the PRG-based DPF scheme of Boyle et al. roughly by a factor of 4 and optimize its computational cost. The optimized DPF significantly improves the concrete costs of 2-server PIR and related primitives. * FSS for new function families. We present an efficient PRG-based 2-party FSS scheme for the family of decision trees, leaking only the topology of the tree and the internal node labels. We apply this towards FSS for multi-dimensional intervals. We also present a general technique for extending FSS schemes by increasing the number of parties. * Verifiable FSS. We present efficient protocols for verifying that keys (k*/1,...,k*/m ), obtained from a potentially malicious user, are consistent with some f in F. Such a verification may be critical for applications that involve private writing or voting by many users.

Ruohonen, Jukka, Leppänen, Ville.  2016.  On the Design of a Simple Network Resolver for DNS Mining. Proceedings of the 17th International Conference on Computer Systems and Technologies 2016. :105–112.

The domain name system (DNS) offers an ideal distributed database for big data mining related to different cyber security questions. Besides infrastructural problems, scalability issues, and security challenges related to the protocol itself, information from DNS is often required also for more nuanced cyber security questions. Against this backdrop, this paper discusses the fundamental characteristics of DNS in relation to cyber security and different research prototypes designed for passive but continuous DNS-based monitoring of domains and addresses. With this discussion, the paper also illustrates a few general software design aspects.

Alhuzali, Abeer, Eshete, Birhanu, Gjomemo, Rigel, Venkatakrishnan, V.N..  2016.  Chainsaw: Chained Automated Workflow-based Exploit Generation. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :641–652.

We tackle the problem of automated exploit generation for web applications. In this regard, we present an approach that significantly improves the state-of-art in web injection vulnerability identification and exploit generation. Our approach for exploit generation tackles various challenges associated with typical web application characteristics: their multi-module nature, interposed user input, and multi-tier architectures using a database backend. Our approach develops precise models of application workflows, database schemas, and native functions to achieve high quality exploit generation. We implemented our approach in a tool called Chainsaw. Chainsaw was used to analyze 9 open source applications and generated over 199 first- and second-order injection exploits combined, significantly outperforming several related approaches.

Chen, Tse-Hsun, Shang, Weiyi, Yang, Jinqiu, Hassan, Ahmed E., Godfrey, Michael W., Nasser, Mohamed, Flora, Parminder.  2016.  An Empirical Study on the Practice of Maintaining Object-relational Mapping Code in Java Systems. Proceedings of the 13th International Conference on Mining Software Repositories. :165–176.

Databases have become one of the most important components in modern software systems. For example, web services, cloud computing systems, and online transaction processing systems all rely heavily on databases. To abstract the complexity of accessing a database, developers make use of Object-Relational Mapping (ORM) frameworks. ORM frameworks provide an abstraction layer between the application logic and the underlying database. Such abstraction layer automatically maps objects in Object-Oriented Languages to database records, which significantly reduces the amount of boilerplate code that needs to be written. Despite the advantages of using ORM frameworks, we observe several difficulties in maintaining ORM code (i.e., code that makes use of ORM frameworks) when cooperating with our industrial partner. After conducting studies on other open source systems, we find that such difficulties are common in other Java systems. Our study finds that i) ORM cannot completely encapsulate database accesses in objects or abstract the underlying database technology, thus may cause ORM code changes more scattered; ii) ORM code changes are more frequent than regular code, but there is a lack of tools that help developers verify ORM code at compilation time; iii) we find that changes to ORM code are more commonly due to performance or security reasons; however, traditional static code analyzers need to be extended to capture the peculiarities of ORM code in order to detect such problems. Our study highlights the hidden maintenance costs of using ORM frameworks, and provides some initial insights about potential approaches to help maintain ORM code. Future studies should carefully examine ORM code, especially given the rising use of ORM in modern software systems.

2017-05-22
Suzuki, Kenichi, Kiselyov, Oleg, Kameyama, Yukiyoshi.  2016.  Finally, Safely-extensible and Efficient Language-integrated Query. Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation. :37–48.

Language-integrated query is an embedding of database queries into a host language to code queries at a higher level than the all-to-common concatenation of strings of SQL fragments. The eventually produced SQL is ensured to be well-formed and well-typed, and hence free from the embarrassing (security) problems. Language-integrated query takes advantage of the host language's functional and modular abstractions to compose and reuse queries and build query libraries. Furthermore, language-integrated query systems like T-LINQ generate efficient SQL, by applying a number of program transformations to the embedded query. Alas, the set of transformation rules is not designed to be extensible. We demonstrate a new technique of integrating database queries into a typed functional programming language, so to write well-typed, composable queries and execute them efficiently on any SQL back-end as well as on an in-memory noSQL store. A distinct feature of our framework is that both the query language as well as the transformation rules needed to generate efficient SQL are safely user-extensible, to account for many variations in the SQL back-ends, as well for domain-specific knowledge. The transformation rules are guaranteed to be type-preserving and hygienic by their very construction. They can be built from separately developed and reusable parts and arbitrarily composed into optimization pipelines. With this technique we have embedded into OCaml a relational query language that supports a very large subset of SQL including grouping and aggregation. Its types cover the complete set of intricate SQL behaviors.

Cuff, Paul, Yu, Lanqing.  2016.  Differential Privacy As a Mutual Information Constraint. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :43–54.

Differential privacy is a precise mathematical constraint meant to ensure privacy of individual pieces of information in a database even while queries are being answered about the aggregate. Intuitively, one must come to terms with what differential privacy does and does not guarantee. For example, the definition prevents a strong adversary who knows all but one entry in the database from further inferring about the last one. This strong adversary assumption can be overlooked, resulting in misinterpretation of the privacy guarantee of differential privacy. Herein we give an equivalent definition of privacy using mutual information that makes plain some of the subtleties of differential privacy. The mutual-information differential privacy is in fact sandwiched between ε-differential privacy and (ε,δ)-differential privacy in terms of its strength. In contrast to previous works using unconditional mutual information, differential privacy is fundamentally related to conditional mutual information, accompanied by a maximization over the database distribution. The conceptual advantage of using mutual information, aside from yielding a simpler and more intuitive definition of differential privacy, is that its properties are well understood. Several properties of differential privacy are easily verified for the mutual information alternative, such as composition theorems.