Visible to the public Biblio

Found 136 results

Filters: Keyword is Communication system security  [Clear All Filters]
2015-05-05
Marttinen, A., Wyglinski, A.M., Jantti, R..  2014.  Moving-target defense mechanisms against source-selective jamming attacks in tactical cognitive radio MANETs. Communications and Network Security (CNS), 2014 IEEE Conference on. :14-20.

In this paper, we propose techniques for combating source selective jamming attacks in tactical cognitive MANETs. Secure, reliable and seamless communications are important for facilitating tactical operations. Selective jamming attacks pose a serious security threat to the operations of wireless tactical MANETs since selective strategies possess the potential to completely isolate a portion of the network from other nodes without giving a clear indication of a problem. Our proposed mitigation techniques use the concept of address manipulation, which differ from other techniques presented in open literature since our techniques employ de-central architecture rather than a centralized framework and our proposed techniques do not require any extra overhead. Experimental results show that the proposed techniques enable communications in the presence of source selective jamming attacks. When the presence of a source selective jammer blocks transmissions completely, implementing a proposed flipped address mechanism increases the expected number of required transmission attempts only by one in such scenario. The probability that our second approach, random address assignment, fails to solve the correct source MAC address can be as small as 10-7 when using accurate parameter selection.

Lixing Song, Shaoen Wu.  2014.  Cross-layer wireless information security. Computer Communication and Networks (ICCCN), 2014 23rd International Conference on. :1-9.

Wireless information security generates shared secret keys from reciprocal channel dynamics. Current solutions are mostly based on temporal per-frame channel measurements of signal strength and suffer from low key generate rate (KGR), large budget in channel probing, and poor secrecy if a channel does not temporally vary significantly. This paper designs a cross-layer solution that measures noise-free per-symbol channel dynamics across both time and frequency domain and derives keys from the highly fine-grained per-symbol reciprocal channel measurements. This solution consists of merits that: (1) the persymbol granularity improves the volume of available uncorrelated channel measurements by orders of magnitude over per-frame granularity in conventional solutions and so does KGR; 2) the solution exploits subtle channel fluctuations in frequency domain that does not force users to move to incur enough temporal variations as conventional solutions require; and (3) it measures noise-free channel response that suppresses key bit disagreement between trusted users. As a result, in every aspect, the proposed solution improves the security performance by orders of magnitude over conventional solutions. The performance has been evaluated on both a GNU SDR testbed in practice and a local GNU Radio simulator. The cross-layer solution can generate a KGR of 24.07 bits per probing frame on testbed or 19 bits in simulation, although conventional optimal solutions only has a KGR of at most one or two bit per probing frame. It also has a low key bit disagreement ratio while maintaining a high entropy rate. The derived keys show strong independence with correlation coefficients mostly less than 0.05. Furthermore, it is empirically shown that any slight physical change, e.g. a small rotation of antenna, results in fundamentally different cross-layer frequency measurements, which implies the strong secrecy and high efficiency of the proposed solution.
 

Gopejenko, V., Bobrovskis, S..  2014.  Robust security network association adjusted hybrid authentication schema. Application of Information and Communication Technologies (AICT), 2014 IEEE 8th International Conference on. :1-5.

Wireless network, whether it's ad-hoc or at enterprise level is vulnerable due to its features of open medium, and usually due to weak authentication, authorization, encryption, monitoring and accounting mechanisms. Various wireless vulnerability situations as well as the minimal features that are required in order to protect, monitor, account, authenticate, and authorize nodes, users, computers into the network are examined. Also, aspects of several IEEE Security Standards, which were ratified and which are still in draft are described.
 

2015-05-04
Vijayan, A., Thomas, T..  2014.  Anonymity, unlinkability and unobservability in mobile ad hoc networks. Communications and Signal Processing (ICCSP), 2014 International Conference on. :1880-1884.

Mobile ad hoc networks have the features of open medium, dynamic topology, cooperative algorithms, lack of centralized monitoring etc. Due to these, mobile ad hoc networks are much vulnerable to security attacks when compared to wired networks. There are various routing protocols that have been developed to cope up with the limitations imposed by the ad hoc networks. But none of these routing schemes provide complete unlinkability and unobservability. In this paper we have done a survey about anonymous routing and secure communications in mobile ad hoc networks. Different routing protocols are analyzed based on public/private key pairs and cryptosystems, within that USOR can well protect user privacy against both inside and outside attackers. It is a combination of group signature scheme and ID based encryption scheme. These are run during the route discovery process. We implement USOR on ns2, and then its performance is compared with AODV.

Van Vaerenbergh, S., González, O., Vía, J., Santamaría, I..  2014.  Physical layer authentication based on channel response tracking using Gaussian processes. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :2410-2414.

Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.

2015-05-01
do Carmo, R., Hollick, M..  2014.  Analyzing active probing for practical intrusion detection in Wireless Multihop Networks. Wireless On-demand Network Systems and Services (WONS), 2014 11th Annual Conference on. :77-80.

Practical intrusion detection in Wireless Multihop Networks (WMNs) is a hard challenge. It has been shown that an active-probing-based network intrusion detection system (AP-NIDS) is practical for WMNs. However, understanding its interworking with real networks is still an unexplored challenge. In this paper, we investigate this in practice. We identify the general functional parameters that can be controlled, and by means of extensive experimentation, we tune these parameters and analyze the trade-offs between them, aiming at reducing false positives, overhead, and detection time. The traces we collected help us to understand when and why the active probing fails, and let us present countermeasures to prevent it.

Ghatak, S., Bose, S., Roy, S..  2014.  Intelligent wall mounted wireless fencing system using wireless sensor actuator network. Computer Communication and Informatics (ICCCI), 2014 International Conference on. :1-5.

This paper presents the relative merits of IR and microwave sensor technology and their combination with wireless camera for the development of a wall mounted wireless intrusion detection system and explain the phases by which the intrusion information are collected and sent to the central control station using wireless mesh network for analysis and processing the collected data. These days every protected zone is facing numerous security threats like trespassing or damaging of important equipments and a lot more. Unwanted intrusion has turned out to be a growing problem which has paved the way for a newer technology which detects intrusion accurately. Almost all organizations have their own conventional arrangement of protecting their zones by constructing high wall, wire fencing, power fencing or employing guard for manual observation. In case of large areas, manually observing the perimeter is not a viable option. To solve this type of problem we have developed a wall-mounted wireless fencing system. In this project I took the responsibility of studying how the different units could be collaborated and how the data collected from them could be further processed with the help of software, which was developed by me. The Intrusion detection system constitutes an important field of application for IR and microwave based wireless sensor network. A state of the art wall-mounted wireless intrusion detection system will detect intrusion automatically, through multi-level detection mechanism (IR, microwave, active RFID & camera) and will generate multi-level alert (buzzer, images, segment illumination, SMS, E-Mail) to notify security officers, owners and also illuminate the particular segment where the intrusion has happened. This system will enable the authority to quickly handle the emergency through identification of the area of incident at once and to take action quickly. IR based perimeter protection is a proven technology. However IR-based intrusion detection system is not a full-proof solution since (1) IR may fail in foggy or dusty weather condition & hence it may generate false alarm. Therefore we amalgamate this technology with Microwave based intrusion detection which can work satisfactorily in foggy weather. Also another significant arena of our proposed system is the Camera-based intrusion detection. Some industries require this feature to capture the snap-shots of the affected location instantly as the intrusion happens. The Intrusion information data are transmitted wirelessly to the control station via multi hop routing (using active RFID or IEEE 802.15.4 protocol). The Control station will receive intrusion information at real time and analyze the data with the help of the Intrusion software. It then sends SMS to the predefined numbers of the respective authority through GSM modem attached with the control station engine.

Van Vaerenbergh, S., González, O., Vía, J., Santamaría, I..  2014.  Physical layer authentication based on channel response tracking using Gaussian processes. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :2410-2414.

Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.

Pasolini, G., Dardari, D..  2014.  Secret key generation in correlated multi-dimensional Gaussian channels. Communications (ICC), 2014 IEEE International Conference on. :2171-2177.

Wireless channel reciprocity can be successfully exploited as a common source of randomness for the generation of a secret key by two legitimate users willing to achieve confidential communications over a public channel. This paper presents an analytical framework to investigate the theoretical limits of secret-key generation when wireless multi-dimensional Gaussian channels are used as source of randomness. The intrinsic secrecy content of wide-sense stationary wireless channels in frequency, time and spatial domains is derived through asymptotic analysis as the number of observations in a given domain tends to infinity. Some significant case studies are presented where single and multiple antenna eavesdroppers are considered. In the numerical results, the role of signal-to-noise ratio, spatial correlation, frequency and time selectivity is investigated.

2015-04-30
Zhuo Lu, Wenye Wang, Wang, C..  2015.  Camouflage Traffic: Minimizing Message Delay for Smart Grid Applications under Jamming. Dependable and Secure Computing, IEEE Transactions on. 12:31-44.

Smart grid is a cyber-physical system that integrates power infrastructures with information technologies. To facilitate efficient information exchange, wireless networks have been proposed to be widely used in the smart grid. However, the jamming attack that constantly broadcasts radio interference is a primary security threat to prevent the deployment of wireless networks in the smart grid. Hence, spread spectrum systems, which provide jamming resilience via multiple frequency and code channels, must be adapted to the smart grid for secure wireless communications, while at the same time providing latency guarantee for control messages. An open question is how to minimize message delay for timely smart grid communication under any potential jamming attack. To address this issue, we provide a paradigm shift from the case-by-case methodology, which is widely used in existing works to investigate well-adopted attack models, to the worst-case methodology, which offers delay performance guarantee for smart grid applications under any attack. We first define a generic jamming process that characterizes a wide range of existing attack models. Then, we show that in all strategies under the generic process, the worst-case message delay is a U-shaped function of network traffic load. This indicates that, interestingly, increasing a fair amount of traffic can in fact improve the worst-case delay performance. As a result, we demonstrate a lightweight yet promising system, transmitting adaptive camouflage traffic (TACT), to combat jamming attacks. TACT minimizes the message delay by generating extra traffic called camouflage to balance the network load at the optimum. Experiments show that TACT can decrease the probability that a message is not delivered on time in order of magnitude.

Weyrich, M., Schmidt, J.-P., Ebert, C..  2014.  Machine-to-Machine Communication. Software, IEEE. 31:19-23.

Although wireless communication is integral to our daily lives, there are numerous crucial questions related to coverage, energy consumption, reliability, and security when it comes to industrial deployment. The authors provide an overview of wireless machine-to-machine (M2M) technologies in the context of a smart factory.