Visible to the public Biblio

Found 136 results

Filters: Keyword is Communication system security  [Clear All Filters]
2021-04-27
Wagner, T. J., Ford, T. C..  2020.  Metrics to Meet Security Privacy Requirements with Agile Software Development Methods in a Regulated Environment. 2020 International Conference on Computing, Networking and Communications (ICNC). :17—23.

This work examines metrics that can be used to measure the ability of agile software development methods to meet security and privacy requirements of communications applications. Many implementations of communication protocols, including those in vehicular networks, occur within regulated environments where agile development methods are traditionally discouraged. We propose a framework and metrics to measure adherence to security, quality and software effectiveness regulations if developers desire the cost and schedule benefits of agile methods. After providing an overview of specific challenges that a regulated environment imposes on communications software development, we proceed to examine the 12 agile principles and how they relate to a regulatory environment. From this review we identify two metrics to measure performance of three key regulatory attributes of software for communications applications, and then recommend an approach of either tools, agile methods or DevOps that is best positioned to satisfy its regulated environment attributes. By considering the recommendations in this paper, managers of software-dominant communications programs in a regulated environment can gain insight into leveraging the benefits of agile methods.

2021-04-08
Tyagi, H., Vardy, A..  2015.  Universal Hashing for Information-Theoretic Security. Proceedings of the IEEE. 103:1781–1795.
The information-theoretic approach to security entails harnessing the correlated randomness available in nature to establish security. It uses tools from information theory and coding and yields provable security, even against an adversary with unbounded computational power. However, the feasibility of this approach in practice depends on the development of efficiently implementable schemes. In this paper, we review a special class of practical schemes for information-theoretic security that are based on 2-universal hash families. Specific cases of secret key agreement and wiretap coding are considered, and general themes are identified. The scheme presented for wiretap coding is modular and can be implemented easily by including an extra preprocessing layer over the existing transmission codes.
Venkitasubramaniam, P., Yao, J., Pradhan, P..  2015.  Information-Theoretic Security in Stochastic Control Systems. Proceedings of the IEEE. 103:1914–1931.
Infrastructural systems such as the electricity grid, healthcare, and transportation networks today rely increasingly on the joint functioning of networked information systems and physical components, in short, on cyber-physical architectures. Despite tremendous advances in cryptography, physical-layer security and authentication, information attacks, both passive such as eavesdropping, and active such as unauthorized data injection, continue to thwart the reliable functioning of networked systems. In systems with joint cyber-physical functionality, the ability of an adversary to monitor transmitted information or introduce false information can lead to sensitive user data being leaked or result in critical damages to the underlying physical system. This paper investigates two broad challenges in information security in cyber-physical systems (CPSs): preventing retrieval of internal physical system information through monitored external cyber flows, and limiting the modification of physical system functioning through compromised cyber flows. A rigorous analytical framework grounded on information-theoretic security is developed to study these challenges in a general stochastic control system abstraction-a theoretical building block for CPSs-with the objectives of quantifying the fundamental tradeoffs between information security and physical system performance, and through the process, designing provably secure controller policies. Recent results are presented that establish the theoretical basis for the framework, in addition to practical applications in timing analysis of anonymous systems, and demand response systems in a smart electricity grid.
Bloch, M., Barros, J., Rodrigues, M. R. D., McLaughlin, S. W..  2008.  Wireless Information-Theoretic Security. IEEE Transactions on Information Theory. 54:2515–2534.
This paper considers the transmission of confidential data over wireless channels. Based on an information-theoretic formulation of the problem, in which two legitimates partners communicate over a quasi-static fading channel and an eavesdropper observes their transmissions through a second independent quasi-static fading channel, the important role of fading is characterized in terms of average secure communication rates and outage probability. Based on the insights from this analysis, a practical secure communication protocol is developed, which uses a four-step procedure to ensure wireless information-theoretic security: (i) common randomness via opportunistic transmission, (ii) message reconciliation, (iii) common key generation via privacy amplification, and (iv) message protection with a secret key. A reconciliation procedure based on multilevel coding and optimized low-density parity-check (LDPC) codes is introduced, which allows to achieve communication rates close to the fundamental security limits in several relevant instances. Finally, a set of metrics for assessing average secure key generation rates is established, and it is shown that the protocol is effective in secure key renewal-even in the presence of imperfect channel state information.
Chrysikos, T., Dagiuklas, T., Kotsopoulos, S..  2010.  Wireless Information-Theoretic Security for moving users in autonomic networks. 2010 IFIP Wireless Days. :1–5.
This paper studies Wireless Information-Theoretic Security for low-speed mobility in autonomic networks. More specifically, the impact of user movement on the Probability of Non-Zero Secrecy Capacity and Outage Secrecy Capacity for different channel conditions has been investigated. This is accomplished by establishing a link between different user locations and the boundaries of information-theoretic secure communication. Human mobility scenarios are considered, and its impact on physical layer security is examined, considering quasi-static Rayleigh channels for the fading phenomena. Simulation results have shown that the Secrecy Capacity depends on the relative distance of legitimate and illegitimate (eavesdropper) users in reference to the given transmitter.
2021-03-29
Bodhe, A., Sangale, A..  2020.  Network Parameter Analysis; ad hoc WSN for Security Protocol with Fuzzy Logic. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :960—963.

The wireless communication has become very vast, important and easy to access nowadays because of less cost associated and easily available mobile devices. It creates a potential threat for the community while accessing some secure information like banking passwords on the unsecured network. This proposed research work expose such a potential threat such as Rogue Access Point (RAP) detection using soft computing prediction tool. Fuzzy logic is used to implement the proposed model to identify the presence of RAP existence in the network.

2021-03-15
Toma, A., Krayani, A., Marcenaro, L., Gao, Y., Regazzoni, C. S..  2020.  Deep Learning for Spectrum Anomaly Detection in Cognitive mmWave Radios. 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. :1–7.
Millimeter Wave (mmWave) band can be a solution to serve the vast number of Internet of Things (IoT) and Vehicle to Everything (V2X) devices. In this context, Cognitive Radio (CR) is capable of managing the mmWave spectrum sharing efficiently. However, Cognitive mmWave Radios are vulnerable to malicious users due to the complex dynamic radio environment and the shared access medium. This indicates the necessity to implement techniques able to detect precisely any anomalous behaviour in the spectrum to build secure and efficient radios. In this work, we propose a comparison framework between deep generative models: Conditional Generative Adversarial Network (C-GAN), Auxiliary Classifier Generative Adversarial Network (AC-GAN), and Variational Auto Encoder (VAE) used to detect anomalies inside the dynamic radio spectrum. For the sake of the evaluation, a real mmWave dataset is used, and results show that all of the models achieve high probability in detecting spectrum anomalies. Especially, AC-GAN that outperforms C-GAN and VAE in terms of accuracy and probability of detection.
Joykutty, A. M., Baranidharan, B..  2020.  Cognitive Radio Networks: Recent Advances in Spectrum Sensing Techniques and Security. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :878–884.
Wireless networks are very significant in the present world owing to their widespread use and its application in domains like disaster management, smart cities, IoT etc. A wireless network is made up of a group of wireless nodes that communicate with each other without using any formal infrastructure. The topology of the wireless network is not fixed and it can vary. The huge increase in the number of wireless devices is a challenge owing to the limited availability of wireless spectrum. Opportunistic spectrum access by Cognitive radio enables the efficient usage of limited spectrum resources. The unused channels assigned to the primary users may go waste in idle time. Cognitive radio systems will sense the unused channel space and assigns it temporarily for secondary users. This paper discusses about the recent trends in the two most important aspects of Cognitive radio namely spectrum sensing and security.
Chai, L., Ren, P., Du, Q..  2020.  A Secure Transmission Scheme Based on Efficient Transmission Fountain Code. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :600–604.

Improving the security of data transmission in wireless channels is a key and challenging problem in wireless communication. This paper presents a data security transmission scheme based on high efficiency fountain code. If the legitimate receiver can decode all the original files before the eavesdropper, it can guarantee the safe transmission of the data, so we use the efficient coding scheme of the fountain code to ensure the efficient transmission of the data, and add the feedback mechanism to the transmission of the fountain code so that the coding scheme can be updated dynamically according to the decoding situation of the legitimate receiver. Simulation results show that the scheme has high security and transmitter transmission efficiency in the presence of eavesdropping scenarios.

2021-03-09
Seymen, B., Altop, D. K., Levi, A..  2020.  Augmented Randomness for Secure Key Agreement using Physiological Signals. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.

With the help of technological advancements in the last decade, it has become much easier to extensively and remotely observe medical conditions of the patients through wearable biosensors that act as connected nodes on Body Area Networks (BANs). Sensitive nature of the critical data captured and communicated via wireless medium makes it extremely important to process it as securely as possible. In this regard, lightweight security mechanisms are needed to overcome the hardware resource restrictions of biosensors. Random and secure cryptographic key generation and agreement among the biosensors take place at the core of these security mechanisms. In this paper, we propose the SKA-PSAR (Augmented Randomness for Secure Key Agreement using Physiological Signals) system to produce highly random cryptographic keys for the biosensors to secure communication in BANs. Similar to its predecessor SKA-PS protocol by Karaoglan Altop et al., SKA-PSAR also employs physiological signals, such as heart rate and blood pressure, as inputs for the keys and utilizes the set reconciliation mechanism as basic building block. Novel quantization and binarization methods of the proposed SKA-PSAR system distinguish it from SKA-PS by increasing the randomness of the generated keys. Additionally, SKA-PSAR generated cryptographic keys have distinctive and time variant characteristics as well as long enough bit sizes that provides resistance against cryptographic attacks. Moreover, correct key generation rate is above 98% with respect to most of the system parameters, and false key generation rate of 0% have been obtained for all system parameters.

Stępień, K., Poniszewska-Marańda, A..  2020.  Security methods against Black Hole attacks in Vehicular Ad-Hoc Network. 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). :1–4.
Vehicular Ad-Hoc Networks (VANET) are liable to the Black, Worm and Gray Hole attacks because of the broadcast nature of the wireless medium and a lack of authority standards. Black Hole attack covers the situation when a malicious node uses its routing protocol in order to publicize itself for having the shortest route to the destination node. This aggressive node publicizes its availability of fresh routes regardless of checking its routing table. The consequences of these attacks could lead not only to the broken infrastructure, but could cause hammering people's lives. This paper aims to investigate and compare methods for preventing such types of attacks in a VANET.
2020-12-28
Helluy-Lafont, É, Boé, A., Grimaud, G., Hauspie, M..  2020.  Bluetooth devices fingerprinting using low cost SDR. 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC). :289—294.
Physical fingerprinting is a trending domain in wireless security. Those methods aim at identifying transmitters based on the subtle variations existing in their handling of a communication protocol. They can provide an additional authentication layer, hard to emulate, to improve the security of systems. Software Defined Radios (SDR) are a tool of choice for the fingerprinting, as they virtually enable the analysis of any wireless communication scheme. However, they require expensive computations, and are still complex to handle by newcomers. In this paper, we use low cost SDR to propose a physical-layer fingerprinting approach, that allows recognition of the model of a device performing a Bluetooth scan, with more than 99.8% accuracy in a set of ten devices.
2020-12-21
Kasah, N. b H., Aman, A. H. b M., Attarbashi, Z. S. M., Fazea, Y..  2020.  Investigation on 6LoWPAN Data Security for Internet of Things. 2020 2nd International Conference on Computer and Information Sciences (ICCIS). :1–5.
Low-power wireless network technology is one of the main key characteristics in communication systems that are needed by the Internet of Things (IoT). Nowadays, the 6LoWPAN standard is one of the communication protocols which has been identified as an important protocol in IoT applications. Networking technology in 6LoWPAN transfer IPv6 packets efficiently in link-layer framework that is well-defined by IEEE 802.14.5 protocol. 6Lo WPAN development is still having problems such as threats and entrust crises. The most important part when developing this new technology is the challenge to secure the network. Data security is viewed as a major consideration in this network communications. Many researchers are working to secure 6LoWPAN communication by analyzing the architecture and network features. 6LoWPAN security weakness or vulnerability is exposed to various forms of network attack. In this paper, the security solutions for 6LoWPAN have been investigated. The requirements of safety in 6LoWPAN are also presented.
2020-11-20
Dung, L. T., Tran, H. T. K., Hoa, N. T. T., Choi, S..  2019.  Analysis of Local Secure Connectivity of Legitimate User in Stochastic Wireless Networks. 2019 3rd International Conference on Recent Advances in Signal Processing, Telecommunications Computing (SigTelCom). :155—159.
In this paper, we investigate the local secure connectivity in terms of the probability of existing a secure wireless connection between two legitimate users and the isolated security probability of a legitimate user in stochastic wireless networks. Specifically, the closed-form expressions of the probability that there is a secure wireless communication between two legitimate users are derived first. Then, based on these equations, the corresponding isolated secure probability are given. The characteristics of local secure connectivity are examined in four scenarios combined from two wireless channel conditions (deterministic/Rayleigh fading) and two eavesdropper configurations (non-colluding/colluding). All the derived mathematical equations are validated by the Monte-Carlo simulation. The obtained numerical results in this paper reveal some interesting features of the impact of eavesdropper collusion, wireless channel fading, and density ratio on the secure connection probability and the isolated security probability of legitimate user in stochastic networks.
2020-10-29
Tomar, Ravi, Awasthi, Yogesh.  2019.  Prevention Techniques Employed in Wireless Ad-Hoc Networks. 2019 International Conference on Advanced Science and Engineering (ICOASE). :192—197.
The paper emphasizes the various aspects of ad-hoc networks. The different types of attacks that affect the system and are prevented by various algorithms mentioned in this paper. Since Ad-hoc wireless networks have no infrastructure and are always unreliable therefore they are subject to many attacks. The black hole attack is seen as one of the dangerous attacks of them. In this attack the malicious node usually absorbs each data packets that are similar to separate holes in everything. Likewise all packets in the network are dropped. For this reason various prevention measures should be employed in the form of routing finding first then the optimization followed by the classification.
2020-09-28
Kandah, Farah, Cancelleri, Joseph, Reising, Donald, Altarawneh, Amani, Skjellum, Anthony.  2019.  A Hardware-Software Codesign Approach to Identity, Trust, and Resilience for IoT/CPS at Scale. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1125–1134.
Advancement in communication technologies and the Internet of Things (IoT) is driving adoption in smart cities that aims to increase operational efficiency and improve the quality of services and citizen welfare, among other potential benefits. The privacy, reliability, and integrity of communications must be ensured so that actions can be appropriate, safe, accurate, and implemented promptly after receiving actionable information. In this work, we present a multi-tier methodology consisting of an authentication and trust-building/distribution framework designed to ensure the safety and validity of the information exchanged in the system. Blockchain protocols and Radio Frequency-Distinct Native Attributes (RF-DNA) combine to provide a hardware-software codesigned system for enhanced device identity and overall system trustworthiness. Our threat model accounts for counterfeiting, breakout fraud, and bad mouthing of one entity by others. Entity trust (e.g., IoT devices) depends on quality and level of participation, quality of messages, lifetime of a given entity in the system, and the number of known "bad" (non-consensus) messages sent by that entity. Based on this approach to trust, we are able to adjust trust upward and downward as a function of real-time and past behavior, providing other participants with a trust value upon which to judge information from and interactions with the given entity. This approach thereby reduces the potential for manipulation of an IoT system by a bad or byzantine actor.
Li, Kai, Kurunathan, Harrison, Severino, Ricardo, Tovar, Eduardo.  2018.  Cooperative Key Generation for Data Dissemination in Cyber-Physical Systems. 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS). :331–332.
Securing wireless communication is significant for privacy and confidentiality of sensing data in Cyber-Physical Systems (CPS). However, due to broadcast nature of radio channels, disseminating sensory data is vulnerable to eavesdropping and message modification. Generating secret keys by extracting the shared randomness in a wireless fading channel is a promising way to improve the communication security. In this poster, we present a novel secret key generation protocol for securing real-time data dissemination in CPS, where the sensor nodes cooperatively generate a shared key by estimating the quantized fading channel randomness. A 2-hop wireless sensor network testbed is built and preliminary experimental results show that the quantization intervals and distance between the nodes lead to a secret bit mismatch.
2020-09-21
Sámano-Robles, Ramiro.  2019.  MAC-PRY Cross-Layer Design for Secure Wireless Avionics Intra-Communications. 2019 Eighth International Conference on Emerging Security Technologies (EST). :1–7.
This paper presents a framework for medium access control (MAC) and physical (PRY) cross-layer security design of wireless avionics intra-communications (WAICs). The paper explores the different options based on the latest results of MAC-PRY cross-layer design and the available standard technologies for WAICs. Particular emphasis is given to solutions based on multiple-input multiple-output (MIMO) systems and recent developments towards a wireless technology with ultra-low latency and high reliability in the context of 5G and machine-type traffic support. One major objective is to improve WAICs technology and thus match the real-time, reliability and safety critical performance of the internal aeronautics bus technologies (e.g., ARINC 664). The main identified vulnerabilities and potential solutions are explored, as well as their impact on system design complexity and feasibility for wireless networks on-board aircraft. The solutions are presented in the context of the European project SCOTT (secure connected trustable things) using the recently released reference architecture for trusted IoT systems. Other aspects of SCOTT such as trust, privacy, security classes, and safety are also discussed here for the aeronautics domain.
2020-09-18
Simpson, Oluyomi, Sun, Yichuang.  2019.  A Stochastic based Physical Layer Security in Cognitive Radio Networks: Cognitive Relay to Fusion Center. 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC). :1—7.
Cognitive radio networks (CRNs) are found to be, without difficulty wide-open to external malicious threats. Secure communication is an important prerequisite for forthcoming fifth-generation (5G) systems, and CRs are not exempt. A framework for developing the accomplishable benefits of physical layer security (PLS) in an amplify-and-forward cooperative spectrum sensing (AF-CSS) in a cognitive radio network (CRN) using a stochastic geometry is proposed. In the CRN the spectrum sensing data from secondary users (SU) are collected by a fusion center (FC) with the assistance of access points (AP) as cognitive relays, and when malicious eavesdropping SU are listening. In this paper we focus on the secure transmission of active APs relaying their spectrum sensing data to the FC. Closed expressions for the average secrecy rate are presented. Analytical formulations and results substantiate our analysis and demonstrate that multiple antennas at the APs is capable of improving the security of an AF-CSSCRN. The obtained numerical results also show that increasing the number of FCs, leads to an increase in the secrecy rate between the AP and its correlated FC.
2020-07-30
Gauniyal, Rishav, Jain, Sarika.  2019.  IoT Security in Wireless Devices. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :98—102.

IoT is evolving as a combination of interconnected devices over a particular network. In the proposed paper, we discuss about the security of IoT system in the wireless devices. IoT security is the platform in which the connected devices over the network are safeguarded over internet of things framework. Wireless devices play an eminent role in this kind of networks since most of the time they are connected to the internet. Accompanied by major users cannot ensure their end to end security in the IoT environment. However, connecting these devices over the internet via using IoT increases the chance of being prone to the serious issues that may affect the system and its data if they are not protected efficiently. In the proposed paper, the security of IoT in wireless devices will be enhanced by using ECC. Since the issues related to security are becoming common these days, an attempt has been made in this proposed paper to enhance the security of IoT networks by using ECC for wireless devices.

2020-06-04
Tsiota, Anastasia, Xenakis, Dionysis, Passas, Nikos, Merakos, Lazaros.  2019.  Multi-Tier and Multi-Band Heterogeneous Wireless Networks with Black Hole Attacks. 2019 IEEE Global Communications Conference (GLOBECOM). :1—6.

Wireless networks are currently proliferated by multiple tiers and heterogeneous networking equipment that aims to support multifarious services ranging from distant monitoring and control of wireless sensors to immersive virtual reality services. The vast collection of heterogeneous network equipment with divergent radio capabilities (e.g. multi-GHz operation) is vulnerable to wireless network attacks, raising questions on the service availability and coverage performance of future multi-tier wireless networks. In this paper, we study the impact of black hole attacks on service coverage of multi-tier heterogeneous wireless networks and derive closed form expressions when network nodes are unable to identify and avoid black hole nodes. Assuming access to multiple bands, the derived expressions can be readily used to assess the performance gains following from the employment of different association policies and the impact of black hole attacks in multi-tier wireless networks.

2020-06-02
Kundu, M. K., Shabab, S., Badrudduza, A. S. M..  2019.  Information Theoretic Security over α-µ/α-µ Composite Multipath Fading Channel. 2019 IEEE International Conference on Telecommunications and Photonics (ICTP). :1—4.

Multipath fading as well as shadowing is liable for the leakage of confidential information from the wireless channels. In this paper a solution to this information leakage is proposed, where a source transmits signal through a α-μ/α-μ composite fading channel considering an eavesdropper is present in the system. Secrecy enhancement is investigated with the help of two fading parameters α and μ. To mitigate the impacts of shadowing a α-μ distribution is considered whose mean is another α-μ distribution which helps to moderate the effects multipath fading. The mathematical expressions of some secrecy matrices such as the probability of non-zero secrecy capacity and the secure outage probability are obtained in closed-form to analyze security of the wireless channel in light of the channel parameters. Finally, Monte-Carlo simulations are provided to justify the correctness of the derived expressions.

2020-05-15
Lebiednik, Brian, Abadal, Sergi, Kwon, Hyoukjun, Krishna, Tushar.  2018.  Architecting a Secure Wireless Network-on-Chip. 2018 Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS). :1—8.

With increasing integration in SoCs, the Network-on-Chip (NoC) connecting cores and accelerators is of paramount importance to provide low-latency and high-throughput communication. Due to limits to scaling of electrical wires in terms of energy and delay, especially for long multi-mm distances on-chip, alternate technologies such as Wireless Network-on-Chip (WNoC) have shown promise. WNoCs can provide low-latency one-hop broadcasts across the entire chip and can augment point-to-point multi-hop signaling over traditional wired NoCs. Thus, there has been a recent surge in research demonstrating the performance and energy benefits of WNoCs. However, little to no work has studied the additional security and fault tolerance challenges that are unique to WNoCs. In this work, we study potential threats related to denial-of-service, spoofing, and eavesdropping attacks in WNoCs, due to malicious hardware trojans or faulty wireless components. We introduce Prometheus, a dropin solution inside the network interface that provides protection from all three attacks, while adhering to the strict area, power and latency constraints of on-chip systems.

2020-05-11
Poovendran, R, Billclinton., S, Darshan., R, Dinakar., R, Fazil., M.  2019.  Design and analysis of a mesh-based Adaptive Wireless Network-on Chips Architecture With Irregular Network Routing. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–6.
The metallic interface for between core messages expends wealth influence and lesser throughput which are huge in Network-on Chip (NoC) structures. We proposed a remote Network-on-Chip (NoC) building Wireless Network-on Chip that uses power and imperatives gainful remote handsets to improve higherenergy and throughput by altering channels as indicated by traffic plans. Our proposed computations uses interface use bits of knowledge to redispensreal platforms, and a vitality funds of 29-35%. Wireless channels and a token sharing arrangement to totally use the remote information transmission successfully. Remote/electrical topological with results demonstrates a through-put advancement of 69%, a speedup between 1.7-2.9X on real platform, and an power savings of 25-38%.
2020-04-10
Simpson, Oluyomi, Sun, Yichuang.  2019.  A Stochastic Method to Physical Layer Security of an Amplify-and-Forward Spectrum Sensing in Cognitive Radio Networks: Secondary User to Relay. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :197—202.
In this paper, a framework for capitalizing on the potential benefits of physical layer security in an amplify-and-forward cooperative spectrum sensing (AF-CSS) in a cognitive radio network (CRN) using a stochastic geometry is proposed. In the CRN network the sensing data from secondary users (SUs) are collected by a fusion center (FC) with the help of access points (AP) as relays, and when malicious eavesdropping secondary users (SUs) are listening. We focus on the secure transmission of active SUs transmitting their sensing data to the AP. Closed expressions for the average secrecy rate are presented. Numerical results corroborate our analysis and show that multiple antennas at the APs can enhance the security of the AF-CSS-CRN. The obtained numerical results show that average secrecy rate between the AP and its correlated FC decreases when the number of AP is increased. Nevertheless, we find that an increase in the number of AP initially increases the overall average secrecy rate, with a perilous value at which the overall average secrecy rate then decreases. While increasing the number of active SUs, there is a decrease in the secrecy rate between the sensor and its correlated AP.