Biblio
Crowd sensing is one of the core features of internet of vehicles, the use of internet of vehicles for crowd sensing is conducive to the rational allocation of sensing tasks. This paper mainly studies the problem of task allocation for crowd sensing in internet of vehicles, proposes a trajectory-based task allocation scheme for crowd sensing in internet of vehicles. With limited budget constraints, participants' trajectory is taken as an indicator of the spatiotemporal availability. Based on the solution idea of the minimal-cover problem, select the minimum number of participating vehicles to achieve the coverage of the target area.
With the rapid development of the contemporary society, wide use of smart phone and vehicle sensing devices brings a huge influence on the extensive data collection. Network coding can only provide weak security privacy protection. Aiming at weak secure feature of network coding, this paper proposes an information transfer mechanism, Weak Security Network Coding with Homomorphic Encryption (HE-WSNC), and it is integrated into routing policy. In this mechanism, a movement model is designed, which allows information transmission process under Wi-Fi and Bluetooth environment rather than consuming 4G data flow. Not only does this application reduce the cost, but also improve reliability of data transmission. Moreover, it attracts more users to participate.
The recent proliferation of human-carried mobile devices has given rise to mobile crowd sensing (MCS) systems that outsource the collection of sensory data to the public crowd equipped with various mobile devices. A fundamental issue in such systems is to effectively incentivize worker participation. However, instead of being an isolated module, the incentive mechanism usually interacts with other components which may affect its performance, such as data aggregation component that aggregates workers' data and data perturbation component that protects workers' privacy. Therefore, different from past literature, we capture such interactive effect, and propose INCEPTION, a novel MCS system framework that integrates an incentive, a data aggregation, and a data perturbation mechanism. Specifically, its incentive mechanism selects workers who are more likely to provide reliable data, and compensates their costs for both sensing and privacy leakage. Its data aggregation mechanism also incorporates workers' reliability to generate highly accurate aggregated results, and its data perturbation mechanism ensures satisfactory protection for workers' privacy and desirable accuracy for the final perturbed results. We validate the desirable properties of INCEPTION through theoretical analysis, as well as extensive simulations.