Visible to the public Biblio

Filters: Keyword is data aggregation  [Clear All Filters]
2018-05-30
Wen, M., Zhang, X., Li, H., Li, J..  2017.  A Data Aggregation Scheme with Fine-Grained Access Control for the Smart Grid. 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). :1–5.

With the rapid development of smart grid, smart meters are deployed at energy consumers' premises to collect real-time usage data. Although such a communication model can help the control center of the energy producer to improve the efficiency and reliability of electricity delivery, it also leads to some security issues. For example, this real-time data involves the customers' privacy. Attackers may violate the privacy for house breaking, or they may tamper with the transmitted data for their own benefits. For this purpose, many data aggregation schemes are proposed for privacy preservation. However, rare of them cares about both the data aggregation and fine-grained access control to improve the data utility. In this paper, we proposes a data aggregation scheme based on attribute decision tree. Security analysis illustrates that our scheme can achieve the data integrity, data privacy preservation and fine- grained data access control. Experiment results show that our scheme are more efficient than existing schemes.

2018-04-02
Wei, R., Shen, H., Tian, H..  2017.  An Improved (k,p,l)-Anonymity Method for Privacy Preserving Collaborative Filtering. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. :1–6.

Collaborative Filtering (CF) is a successful technique that has been implemented in recommender systems and Privacy Preserving Collaborative Filtering (PPCF) aroused increasing concerns of the society. Current solutions mainly focus on cryptographic methods, obfuscation methods, perturbation methods and differential privacy methods. But these methods have some shortcomings, such as unnecessary computational cost, lower data quality and hard to calibrate the magnitude of noise. This paper proposes a (k, p, I)-anonymity method that improves the existing k-anonymity method in PPCF. The method works as follows: First, it applies Latent Factor Model (LFM) to reduce matrix sparsity. Then it improves Maximum Distance to Average Vector (MDAV) microaggregation algorithm based on importance partitioning to increase homogeneity among records in each group which can retain better data quality and (p, I)-diversity model where p is attacker's prior knowledge about users' ratings and I is the diversity among users in each group to improve the level of privacy preserving. Theoretical and experimental analyses show that our approach ensures a higher level of privacy preserving based on lower information loss.

2018-02-21
Lyu, L., Law, Y. W., Jin, J., Palaniswami, M..  2017.  Privacy-Preserving Aggregation of Smart Metering via Transformation and Encryption. 2017 IEEE Trustcom/BigDataSE/ICESS. :472–479.

This paper proposes a novel privacy-preserving smart metering system for aggregating distributed smart meter data. It addresses two important challenges: (i) individual users wish to publish sensitive smart metering data for specific purposes, and (ii) an untrusted aggregator aims to make queries on the aggregate data. We handle these challenges using two main techniques. First, we propose Fourier Perturbation Algorithm (FPA) and Wavelet Perturbation Algorithm (WPA) which utilize Fourier/Wavelet transformation and distributed differential privacy (DDP) to provide privacy for the released statistic with provable sensitivity and error bounds. Second, we leverage an exponential ElGamal encryption mechanism to enable secure communications between the users and the untrusted aggregator. Standard differential privacy techniques perform poorly for time-series data as it results in a Θ(n) noise to answer n queries, rendering the answers practically useless if n is large. Our proposed distributed differential privacy mechanism relies on Gaussian principles to generate distributed noise, which guarantees differential privacy for each user with O(1) error, and provides computational simplicity and scalability. Compared with Gaussian Perturbation Algorithm (GPA) which adds distributed Gaussian noise to the original data, the experimental results demonstrate the superiority of the proposed FPA and WPA by adding noise to the transformed coefficients.

2018-02-06
Guan, Z., Si, G., Du, X., Liu, P., Zhang, Z., Zhou, Z..  2017.  Protecting User Privacy Based on Secret Sharing with Fault Tolerance for Big Data in Smart Grid. 2017 IEEE International Conference on Communications (ICC). :1–6.

In smart grid, large quantities of data is collected from various applications, such as smart metering substation state monitoring, electric energy data acquisition, and smart home. Big data acquired in smart grid applications is usually sensitive. For instance, in order to dispatch accurately and support the dynamic price, lots of smart meters are installed at user's house to collect the real-time data, but all these collected data are related to user privacy. In this paper, we propose a data aggregation scheme based on secret sharing with fault tolerance in smart grid, which ensures that control center gets the integrated data without revealing user's privacy. Meanwhile, we also consider fault tolerance during the data aggregation. At last, we analyze the security of our scheme and carry out experiments to validate the results.

2017-10-25
Pyrgelis, Apostolos, De Cristofaro, Emiliano, Ross, Gordon J..  2016.  Privacy-friendly Mobility Analytics Using Aggregate Location Data. Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. :34:1–34:10.

Location data can be extremely useful to study commuting patterns and disruptions, as well as to predict real-time traffic volumes. At the same time, however, the fine-grained collection of user locations raises serious privacy concerns, as this can reveal sensitive information about the users, such as, life style, political and religious inclinations, or even identities. In this paper, we study the feasibility of crowd-sourced mobility analytics over aggregate location information: users periodically report their location, using a privacy-preserving aggregation protocol, so that the server can only recover aggregates - i.e., how many, but not which, users are in a region at a given time. We experiment with real-world mobility datasets obtained from the Transport For London authority and the San Francisco Cabs network, and present a novel methodology based on time series modeling that is geared to forecast traffic volumes in regions of interest and to detect mobility anomalies in them. In the presence of anomalies, we also make enhanced traffic volume predictions by feeding our model with additional information from correlated regions. Finally, we present and evaluate a mobile app prototype, called Mobility Data Donors (MDD), in terms of computation, communication, and energy overhead, demonstrating the real-world deployability of our techniques.

2017-09-05
Naureen, Ayesha, Zhang, Ning.  2016.  A Comparative Study of Data Aggregation Approaches for Wireless Sensor Networks. Proceedings of the 12th ACM Symposium on QoS and Security for Wireless and Mobile Networks. :125–128.

In Wireless Sensor Networks (WSNs), data aggregation has been used to reduce bandwidth and energy costs during a data collection process. However, data aggregation, while bringing us the benefit of improving bandwidth usage and energy efficiency, also introduces opportunities for security attacks, thus reducing data delivery reliability. There is a trade-off between bandwidth and energy efficiency and achieving data delivery reliability. In this paper, we present a comparative study on the reliability and efficiency characteristics of different data aggregation approaches using both simulation studies and test bed evaluations. We also analyse the factors that contribute to network congestion and affect data delivery reliability. Finally, we investigate an optimal trade-off between reliability and efficiency properties of the different approaches by using an intermediate approach, called Multi-Aggregator based Multi-Cast (MAMC) data aggregation approach. Our evaluation results for MAMC show that it is possible to achieve reliability and efficiency at the same time.

2017-06-05
Jin, Haiming, Su, Lu, Xiao, Houping, Nahrstedt, Klara.  2016.  INCEPTION: Incentivizing Privacy-preserving Data Aggregation for Mobile Crowd Sensing Systems. Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. :341–350.

The recent proliferation of human-carried mobile devices has given rise to mobile crowd sensing (MCS) systems that outsource the collection of sensory data to the public crowd equipped with various mobile devices. A fundamental issue in such systems is to effectively incentivize worker participation. However, instead of being an isolated module, the incentive mechanism usually interacts with other components which may affect its performance, such as data aggregation component that aggregates workers' data and data perturbation component that protects workers' privacy. Therefore, different from past literature, we capture such interactive effect, and propose INCEPTION, a novel MCS system framework that integrates an incentive, a data aggregation, and a data perturbation mechanism. Specifically, its incentive mechanism selects workers who are more likely to provide reliable data, and compensates their costs for both sensing and privacy leakage. Its data aggregation mechanism also incorporates workers' reliability to generate highly accurate aggregated results, and its data perturbation mechanism ensures satisfactory protection for workers' privacy and desirable accuracy for the final perturbed results. We validate the desirable properties of INCEPTION through theoretical analysis, as well as extensive simulations.