Biblio
Efficient monitoring of high speed computer networks operating with a 100 Gigabit per second (Gbps) data throughput requires a suitable hardware acceleration of its key components. We present a platform capable of automated designing of hash functions suitable for network flow hashing. The platform employs a multi-objective linear genetic programming developed for the hash function design. We evolved high-quality hash functions and implemented them in a field programmable gate array (FPGA). Several evolved hash functions were combined together in order to form a new reconfigurable hash function. The proposed reconfigurable design significantly reduces the area on a chip while the maximum operation frequency remains very close to the fastest hash functions. Properties of evolved hash functions were compared with the state-of-the-art hash functions in terms of the quality of hashing, area and operation frequency in the FPGA.
Many abstract security measurements are based on characteristics of a graph that represents the network. These are typically simple and quick to compute but are often of little practical use in making real-world predictions. Practical network security is often measured using simulation or real-world exercises. These approaches better represent realistic outcomes but can be costly and time-consuming. This work aims to combine the strengths of these two approaches, developing efficient heuristics that accurately predict attack success. Hyper-heuristic machine learning techniques, trained on network attack simulation training data, are used to produce novel graph-based security metrics. These low-cost metrics serve as an approximation for simulation when measuring network security in real time. The approach is tested and verified using a simulation based on activity from an actual large enterprise network. The results demonstrate the potential of using hyper-heuristic techniques to rapidly evolve and react to emerging cybersecurity threats.
Predict software program reliability turns into a completely huge trouble in these days. Ordinary many new software programs are introducing inside the marketplace and some of them dealing with failures as their usage/managing is very hard. and plenty of shrewd strategies are already used to are expecting software program reliability. In this paper we're giving a sensible knowledge and the difference among those techniques with my new method. As a result, the prediction fashions constructed on one dataset display a extensive decrease in their accuracy when they are used with new statistics. The aim of this assessment, SE issues which can be of sensible importance are software development/cost estimation, software program reliability prediction, and so forth, and also computing its broaden computational equipment with enhanced power, scalability, flexibility and that can engage more successfully with human beings.
The aim of this paper is to find cellular automata (CA) rules that are used to describe S-boxes with good cryptographic properties and low implementation cost. Up to now, CA rules have been used in several ciphers to define an S-box, but in all those ciphers, the same CA rule is used. This CA rule is best known as the one defining the Keccak $\chi$ transformation. Since there exists no straightforward method for constructing CA rules that define S-boxes with good cryptographic/implementation properties, we use a special kind of heuristics for that – Genetic Programming (GP). Although it is not possible to theoretically prove the efficiency of such a method, our experimental results show that GP is able to find a large number of CA rules that define good S-boxes in a relatively easy way. We focus on the 4 x 4 and 5 x 5 sizes and we implement the S-boxes in hardware to examine implementation properties like latency, area, and power. Particularly interesting is the internal encoding of the solutions in the considered heuristics using combinatorial circuits; this makes it easy to approximate S-box implementation properties like latency and area a priori.
The moving network target defense (MTD) based approach to security aims to design and develop capabilities to dynamically change the attack surfaces to make it more difficult for attackers to strike. One such capability is to dynamically change the IP addresses of subnetworks in unpredictable ways in an attempt to disrupt the ability of an attacker to collect the necessary reconnaissance information to launch successful attacks. In particular, Denial of Service (DoS) and worms represent examples of distributed attacks that can potentially propagate through networks very quickly, but could also be disrupted by MTD. Conversely, MTD are also disruptive to regular users. For example, when IP addresses are changed dynamically it is no longer effective to use DNS caches for IP address resolutions before any communication can be performed. In this work we take another approach. We note that the deployment of MTD could be triggered through the use of light-weight intrusion detection. We demonstrate that the neuro-evolution of augmented topologies algorithm (NEAT) has the capacity to construct detectors that operate on packet data and produce sparse topologies, hence are real-time in operation. Benchmarking under examples of DoS and worm attacks indicates that NEAT detectors can be constructed from relatively small amounts of data and detect attacks approx. 90% accuracy. Additional experiments with the open-ended evolution of code modules through genetic program teams provided detection rates approaching 100%. We believe that adopting such an approach to MTB a more specific deployment strategy that is less invasive to legitimate users, while disrupting the actions of malicious users.