Biblio
The use of cloud computing and cloud federations has been the focus of studies in the last years. Many of these infrastructures delegate user authentication to Identity Providers. Once these services are available through the Internet, concerns about the confidentiality of user credentials and attributes are high. The main focus of this work is the security of the credentials and user attributes in authentication infrastructures, exploring secret sharing techniques and using cloud federations as a base for storing this information.
The growth in cloud-based services tailored for users means more and more personal data is being exploited, and with this comes the need to better handle user privacy. Software technologies concentrating on privacy preservation typically present a one-size fits all solution. However, users have different viewpoints of what privacy means to them and therefore, configurable and dynamic privacy preserving solutions have the potential to create useful and tailored services without breaching any user's privacy. In this paper, we present a model of user-centered privacy that can be used to analyse a service's behaviour against user preferences, such that a user can be informed of the privacy implications of that service and what fine-grained actions they can take to maintain their privacy. We show through study that the user-based privacy model can: i) provide customizable privacy aligned with user needs; and ii) identify potential privacy breaches.
Cloud computing services have gained a lot of attraction in the recent years, but the shift of data from user-owned desktops and laptops to cloud storage systems has led to serious data privacy implications for the users. Even though privacy notices supplied by the cloud vendors details the data practices and options to protect their privacy, the lengthy and free-flowing textual format of the notices are often difficult to comprehend by the users. Thus we propose a simplified presentation format for privacy practices and choices termed as "Privacy-Dashboard" based on Protection Motivation Theory (PMT) and we intend to test the effectiveness of presentation format using cognitive-fit theory. Also, we indirectly model the cloud privacy concerns using Item-Response Theory (IRT) model. We contribute to the information privacy literature by addressing the literature gap to develop privacy protection artifacts in order to improve the privacy protection behaviors of individual users. The proposed "privacy dashboard" would provide an easy-to-use choice mechanisms that allow consumers to control how their data is collected and used.
Internet-of-Things devices often collect and transmit sensitive information like camera footage, health monitoring data, or whether someone is home. These devices protect data in transit with end-to-end encryption, typically using TLS connections between devices and associated cloud services. But these TLS connections also prevent device owners from observing what their own devices are saying about them. Unlike in traditional Internet applications, where the end user controls one end of a connection (e.g., their web browser) and can observe its communication, Internet-of-Things vendors typically control the software in both the device and the cloud. As a result, owners have no way to audit the behavior of their own devices, leaving them little choice but to hope that these devices are transmitting only what they should. This paper presents TLS–Rotate and Release (TLS-RaR), a system that allows device owners (e.g., consumers, security researchers, and consumer watchdogs) to authorize devices, called auditors, to decrypt and verify recent TLS traffic without compromising future traffic. Unlike prior work, TLS-RaR requires no changes to TLS's wire format or cipher suites, and it allows the device's owner to conduct a surprise inspection of recent traffic, without prior notice to the device that its communications will be audited.
We present OpenFace, our new open-source face recognition system that approaches state-of-the-art accuracy. Integrating OpenFace with inter-frame tracking, we build RTFace, a mechanism for denaturing video streams that selectively blurs faces according to specified policies at full frame rates. This enables privacy management for live video analytics while providing a secure approach for handling retrospective policy exceptions. Finally, we present a scalable, privacy-aware architecture for large camera networks using RTFace.
With the increased popularity of ubiquitous computing and connectivity, the Internet of Things (IoT) also introduces new vulnerabilities and attack vectors. While secure data collection (i.e. the upward link) has been well studied in the literature, secure data dissemination (i.e. the downward link) remains an open problem. Attribute-based encryption (ABE) and outsourced-ABE has been used for secure message distribution in IoT, however, existing mechanisms suffer from extensive computation and/or privacy issues. In this paper, we explore the problem of privacy-preserving targeted broadcast in IoT. We propose two multi-cloud-based outsourced-ABE schemes, namely the parallel-cloud ABE and the chain-cloud ABE, which enable the receivers to partially outsource the computationally expensive decryption operations to the clouds, while preventing user attributes from being disclosed. In particular, the proposed solution protects three types of privacy (i.e., data, attribute and access policy privacy) by enforcing collaborations among multiple clouds. Our schemes also provide delegation verifiability that allows the receivers to verify whether the clouds have faithfully performed the outsourced operations. We extensively analyze the security guarantees of the proposed mechanisms and demonstrate the effectiveness and efficiency of our schemes with simulated resource-constrained IoT devices, which outsource operations to Amazon EC2 and Microsoft Azure.
For single-owner multi-user wireless sensor networks, there is the demand to implement the user privacy-preserving access control protocol in WSNs. Firstly, we propose a new access control protocol based on an efficient attribute-based signature. In the protocol, users need to pay for query, and the protocol achieves fine-grained access control and privacy protection. Then, the protocol is analyzed in detail. Finally, the comparison of protocols indicates that our scheme is more efficient. Our scheme not only protects the privacy of users and achieves fine-grained access control, but also provides the query command validation with low overhead. The scheme can better satisfy the access control requirements of wireless sensor networks.
Outsourcing a huge amount of local data to remote cloud servers that has been become a significant trend for industries. Leveraging the considerable cloud storage space, industries can also put forward the outsourced data to cloud computing. How to collect the data for computing without loss of privacy and confidentiality is one of the crucial security problems. Searchable encryption technique has been proposed to protect the confidentiality of the outsourced data and the privacy of the corresponding data query. This technique, however, only supporting search functionality, may not be fully applicable to real-world cloud computing scenario whereby secure data search, share as well as computation are needed. This work presents a novel encrypted cloud-based data share and search system without loss of user privacy and data confidentiality. The new system enables users to make conjunctive keyword query over encrypted data, but also allows encrypted data to be efficiently and multiply shared among different users without the need of the "download-decrypt-then-encrypt" mode. As of independent interest, our system provides secure keyword update, so that users can freely and securely update data's keyword field. It is worth mentioning that all the above functionalities do not incur any expansion of ciphertext size, namely, the size of ciphertext remains constant during being searched, shared and keyword-updated. The system is proven secure and meanwhile, the efficiency analysis shows its great potential in being used in large-scale database.
In the area of the Internet of Things, cloud-based camera surveillance systems are ubiquitously available for industrial and private environments. However, the sensitive nature of the surveillance use case imposes high requirements on privacy/confidentiality, authenticity, and availability of such systems. In this work, we investigate how currently available mass-market camera systems comply with these requirements. Considering two attacker models, we test the cameras for weaknesses and analyze for their implications. We reverse-engineered the security implementation and discovered several vulnerabilities in every tested system. These weaknesses impair the users' privacy and, as a consequence, may also damage the camera system manufacturer's reputation. We demonstrate how an attacker can exploit these vulnerabilities to blackmail users and companies by denial-of-service attacks, injecting forged video streams, and by eavesdropping private video data - even without physical access to the device. Our analysis shows that current systems lack in practice the necessary care when implementing security for IoT devices.
Computing similarity, especially Jaccard Similarity, between two datasets is a fundamental building block in big data analytics, and extensive applications including genome matching, plagiarism detection, social networking, etc. The increasing user privacy concerns over the release of has sensitive data have made it desirable and necessary for two users to evaluate Jaccard Similarity over their datasets in a privacy-preserving manner. In this paper, we propose two efficient and secure protocols to compute the Jaccard Similarity of two users' private sets with the help of an unfully-trusted server. Specifically, in order to boost the efficiency, we leverage Minhashing algorithm on encrypted data, where the output of our protocols is guaranteed to be a close approximation of the exact value. In both protocols, only an approximate similarity result is leaked to the server and users. The first protocol is secure against a semi-honest server, while the second protocol, with a novel consistency-check mechanism, further achieves result verifiability against a malicious server who cheats in the executions. Experimental results show that our first protocol computes an approximate Jaccard Similarity of two billion-element sets within only 6 minutes (under 256-bit security in parallel mode). To the best of our knowledge, our consistency-check mechanism represents the very first work to realize an efficient verification particularly on approximate similarity computation.
Unease over data privacy will retard consumer acceptance of IoT deployments. The primary source of discomfort is a lack of user control over raw data that is streamed directly from sensors to the cloud. This is a direct consequence of the over-centralization of today's cloud-based IoT hub designs. We propose a solution that interposes a locally-controlled software component called a privacy mediator on every raw sensor stream. Each mediator is in the same administrative domain as the sensors whose data is being collected, and dynamically enforces the current privacy policies of the owners of the sensors or mobile users within the domain. This solution necessitates a logical point of presence for mediators within the administrative boundaries of each organization. Such points of presence are provided by cloudlets, which are small locally-administered data centers at the edge of the Internet that can support code mobility. The use of cloudlet-based mediators aligns well with natural personal and organizational boundaries of trust and responsibility.
With the increasing popularity of cloud storage services, many individuals and enterprises start to move their local data to the clouds. To ensure their privacy and data security, some cloud service users may want to encrypt their data before outsourcing them. However, this impedes efficient data utilities based on the plain text search. In this paper, we study how to construct a secure index that supports both efficient index updating and similarity search. Using the secure index, users are able to efficiently perform similarity searches tolerating input mistakes and update the index when new data are available. We formally prove the security of our proposal and also perform experiments on real world data to show its efficiency.
The wide presence of large graph data and the increasing popularity of storing data in the cloud drive the needs for graph query processing on a remote cloud. But a fundamental challenge is to process user queries without compromising sensitive information. This work focuses on privacy preserving subgraph matching in a cloud server. The goal is to minimize the overhead on both cloud and client sides for subgraph matching, without compromising users' sensitive information. To that end, we transform an original graph \$G\$ into a privacy preserving graph Gk, which meets the requirement of an existing privacy model known as k-automorphism. By making use of the symmetry in a k-automorphic graph, a subgraph matching query can be efficiently answered using a graph Go, a small subset of Gk. This approach saves both space and query cost in the cloud server. We also anonymize the query graphs to protect their label information using label generalization technique. To reduce the search space for a subgraph matching query, we propose a cost model to select the more effective label combinations. The effectiveness and efficiency of our method are demonstrated through extensive experimental results on real datasets.
- « first
- ‹ previous
- 1
- 2
- 3