Aman, Mohd, Verma, Prashant, Rajeswari, D.
2021.
Secure Cloud Data Deduplication with Efficient Re-Encryption. 2021 International Conference on Intelligent Technologies (CONIT). :1–4.
After the emergence of the cloud architecture, many companies migrate their data from conventional storage i.e., on bare metal to the cloud storage. Since then huge amount of data was stored on cloud servers, which later resulted in redundancy of huge amount of data. Hence in this cloud world, many data de-duplication techniques has been widely used. Not only the redundancy but also made data more secure and privacy of the existing data were also increased. Some techniques got limitations and some have their own advantages based on the requirements. Some of the attributes like data privacy, tag regularity and interruption to brute-force attacks. To make data deduplication technique more efficient based on the requirements. This paper will discuss schemes that brace user-defined access control, by allowing the service provider to get information of the information owners. Thus our scheme eliminates redundancy of the data without breaching the privacy and security of clients that depends on service providers. Our lastest deduplication scheme after performing various algorithms resulted in conclusion and producing more efficient data confidentiality and tag consistency. This paper has discussion on various techniques and their drawbacks for the effectiveness of the deduplication.
Zhou, Rui, He, Mingxing, Chen, Zhimin.
2021.
Certificateless Public Auditing Scheme with Data Privacy Preserving for Cloud Storage. 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :675–682.
Rapid development of cloud storage services, users are allowed to upload heavy storage and computational cost to cloud to reduce the local resource and energy consumption. While people enjoy the desirable benefits from the cloud storage service, critical security concerns in data outsourcing have been raised seriously. In the cloud storage service, data owner loses the physical control of the data and these data are fully controlled by the cloud server. As such, the integrity of outsourced data is being put at risk in reality. Remote data integrity checking (RDIC) is an effective solution to checking the integrity of uploaded data. However, most RDIC schemes are rely on traditional public key infrastructure (PKI), which leads communication and storage overhead due to the certificate management. Identity-based RDIC scheme is not need the storage management, but it has a drawback of key escrow. To solve these problems, we propose a practical certificateless RDIC scheme. Moreover, many public auditing schemes authorize the third party auditor (TPA) to check the integrity of remote data and the TPA is not fully trusted. Thus, we take the data privacy into account. The proposed scheme not only can overcome the above deficiencies but also able to preserve the data privacy against the TPA. Our theoretical analyses prove that our mechanism is correct and secure, and our mechanism is able to audit the integrity of cloud data efficiently.
Ma, Zhuoran, Ma, Jianfeng, Miao, Yinbin, Liu, Ximeng, Choo, Kim-Kwang Raymond, Yang, Ruikang, Wang, Xiangyu.
2021.
Lightweight Privacy-preserving Medical Diagnosis in Edge Computing. 2021 IEEE World Congress on Services (SERVICES). :9–9.
In the era of machine learning, mobile users are able to submit their symptoms to doctors at any time, anywhere for personal diagnosis. It is prevalent to exploit edge computing for real-time diagnosis services in order to reduce transmission latency. Although data-driven machine learning is powerful, it inevitably compromises privacy by relying on vast amounts of medical data to build a diagnostic model. Therefore, it is necessary to protect data privacy without accessing local data. However, the blossom has also been accompanied by various problems, i.e., the limitation of training data, vulnerabilities, and privacy concern. As a solution to these above challenges, in this paper, we design a lightweight privacy-preserving medical diagnosis mechanism on edge. Our method redesigns the extreme gradient boosting (XGBoost) model based on the edge-cloud model, which adopts encrypted model parameters instead of local data to reduce amounts of ciphertext computation to plaintext computation, thus realizing lightweight privacy preservation on resource-limited edges. Additionally, the proposed scheme is able to provide a secure diagnosis on edge while maintaining privacy to ensure an accurate and timely diagnosis. The proposed system with secure computation could securely construct the XGBoost model with lightweight overhead, and efficiently provide a medical diagnosis without privacy leakage. Our security analysis and experimental evaluation indicate the security, effectiveness, and efficiency of the proposed system.
Pavani, V., Sri. K, Santhi, Krishna. P, Sandhya, Narayana, V. Lakshman.
2021.
Multi-Level Authentication Scheme for Improving Privacy and Security of Data in Decentralized Cloud Server. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). :391–394.
In recent days cloud domain gains a lot of user attention in order to store and access the data from remote locations connected through the internet. As it is generally known that all the sensitive data come from remote locations will be stored in the centralized storage medium and then try to access the data from that centralized storage space controlled by the cloud server. It is facing a problem like there is no security for the data in terms of user authorization and data authentication from the centralized storage location. Hence, it is required to migrate for a new storage procedure like Decentralized storage of cloud data in which the systems that do not rely on a central authority, so that the collusion resistance can be avoided by maintaining a global identifier. Here, the term de-centralized access means granting multi authorities to control the access for providing more security for the sensitive data. The proposed research study attempts to develop a new scheme by adding a global identifier like Attribute Authority (AA) for providing access keys for the data users who wish to access the sensitive information from the cloud server. The proposed research work attempts to incorporate the composite order bilinear groups scheme for providing access facility for the data users and provide more security for the sensitive data. By conducting various experiments on the proposed model, the obtained result clearly tells that the proposed system is very efficient to access the data in a de-centralized manner by using a global identifier.
Mittal, Sonam, Jindal, Priya, Ramkumar, K. R..
2021.
Data Privacy and System Security for Banking on Clouds using Homomorphic Encryption. 2021 2nd International Conference for Emerging Technology (INCET). :1–6.
In recent times, the use of cloud computing has gained popularity all over the world in the context of performing smart computations on big data. The privacy of sensitive data of the client is of utmost important issues. Data leakage or hijackers may theft significant information about the client that ultimately may affect the reputation and prestige of its owner (bank) and client (customers). In general, to save the privacy of our banking data it is preferred to store, process, and transmit the data in the form of encrypted text. But now the main concern leads to secure computation over encrypted text or another possible way to perform computation over clouds makes data more vulnerable to hacking and attacks. Existing classical encryption techniques such as RSA, AES, and others provide secure transaction procedures for data over clouds but these are not fit for secure computation over data in the clouds. In 2009, Gentry comes with a solution for such issues and presents his idea as Homomorphic encryption (HE) that can perform computation over encrypted text without decrypting the data itself. Now a day's privacy-enhancing techniques (PET) are there to explore more potential benefits in security issues and useful in historical cases of privacy failure. Differential privacy, Federated analysis, homomorphic encryption, zero-knowledge proof, and secure multiparty computation are a privacy-enhancing technique that may useful in financial services as these techniques provide a fully-fledged mechanism for financial institutes. With the collaboration of industries, these techniques are may enable new data-sharing agreements for a more secure solution over data. In this paper, the primary concern is to investigate the different standards and properties of homomorphic encryption in digital banking and financial institutions.
Zobaed, Sakib M, Salehi, Mohsen Amini, Buyya, Rajkumar.
2021.
SAED: Edge-Based Intelligence for Privacy-Preserving Enterprise Search on the Cloud. 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :366–375.
Cloud-based enterprise search services (e.g., AWS Kendra) have been entrancing big data owners by offering convenient and real-time search solutions to them. However, the problem is that individuals and organizations possessing confidential big data are hesitant to embrace such services due to valid data privacy concerns. In addition, to offer an intelligent search, these services access the user’s search history that further jeopardizes his/her privacy. To overcome the privacy problem, the main idea of this research is to separate the intelligence aspect of the search from its pattern matching aspect. According to this idea, the search intelligence is provided by an on-premises edge tier and the shared cloud tier only serves as an exhaustive pattern matching search utility. We propose Smartness at Edge (SAED mechanism that offers intelligence in the form of semantic and personalized search at the edge tier while maintaining privacy of the search on the cloud tier. At the edge tier, SAED uses a knowledge-based lexical database to expand the query and cover its semantics. SAED personalizes the search via an RNN model that can learn the user’s interest. A word embedding model is used to retrieve documents based on their semantic relevance to the search query. SAED is generic and can be plugged into existing enterprise search systems and enable them to offer intelligent and privacy-preserving search without enforcing any change on them. Evaluation results on two enterprise search systems under real settings and verified by human users demonstrate that SAED can improve the relevancy of the retrieved results by on average ≈24% for plain-text and ≈75% for encrypted generic datasets.
Huang, Liangqun, Xu, Lei, Zhu, Liehuang, Gai, Keke.
2021.
A Blockchain-Assisted Privacy-Preserving Cloud Computing Method with Multiple Keys. 2021 IEEE 6th International Conference on Smart Cloud (SmartCloud). :19–25.
How to analyze users' data without compromising individual privacy is an important issue in cloud computing. In order to protect privacy and enable the cloud to perform computing, users can apply homomorphic encryption schemes to their data. Most of existing homomorphic encryption-based cloud computing methods require that users' data are encrypted with the same key. While in practice, different users may prefer to use different keys. In this paper, we propose a privacy-preserving cloud computing method which adopts a double-trapdoor homomorphic encryption scheme to deal with the multi-key issue. The proposed method uses two cloud servers to analyze users' encrypted data. And we propose to use blockchain to monitor the information exchanged between the servers. Security analysis shows that the introduction of blockchain can help to prevent the two servers from colluding with each other, hence data privacy is further enhanced. And we conduct simulations to demonstrate the feasibility of the propose method.
M, Kiruthika., M.S, Saravanan..
2021.
A Related work on secure event logs protection with user identity using privacy preservation for the cloud infrastructure. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1–4.
The cloud infrastructure is not new to the society from past one decade. But even in recent time, the companies started migrating from local services to cloud services for better connectivity and for other requirements, this is due to companies financial limitations on existing infrastructure, they are migrating to less cost and hire and fire support based cloud infrastructures. But the proposed cloud infrastructure require security on event logs accessed by different end users on the cloud environment. To adopt the security on local services to cloud service based infrastructure, it need better identify management between end users. Therefore this paper presents the related works of user identity as a service for each user involving in cloud service and the accessing permission and protection will be monitored and controlled by the cloud security infrastructures.
Nana, Huang, Yuanyuan, Yang.
2021.
An Integrative and Privacy Preserving-Based Medical Cloud Platform. 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :411–414.
With the rapid development of cloud computing which has been extensively applied in the health research, the concept of medical cloud has become widespread. In this paper, we proposed an integrated medical cloud architecture with multiple applications based on privacy protection. The scheme in this paper adopted attribute encryption to ensure the PHR files encrypted all the time in order to protect the health privacy of the PHR owners not leaked. In addition, the medical cloud architecture proposed in this paper is suitable for multiple application scenarios. Different from the traditional domain division which has public domain (PUD) and private domain (PSD), the PUD domain is further divided into PUD1and PUD2 with finer granularity based on different permissions of the PHR users. In the PUD1, the PHR users have read or write access to the PHR files, while the PHR users in the PUD2 only have read permissions. In the PSD, we use key aggregation encryption (KAE) to realize the access control. For PHR users of PUD1 and PUD2, the outsourcable ABE technology is adopted to greatly reduce the computing burden of users. The results of function and performance test show that the scheme is safe and effective.
Manyura, Momanyi Biffon, Gizaw, Sintayehu Mandefro.
2021.
Enhancing Cloud Data Privacy Using Pre-Internet Data Encryption. 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :446–449.
Cloud computing is one of the greatest and authoritative paradigms in computing as it provides access and use of various third-party services at a lower cost. However, there exist various security challenges facing cloud computing especially in the aspect of data privacy and this is more critical when dealing with sensitive personal or organization's data. Cloud service providers encrypt data during transfer from the local hard drive to the cloud server and at the server-side, the only problem is that the encryption key is stored by the service provider meaning they can decrypt your data. This paper discusses how cloud security can be enhanced by using client-side data encryption (pre-internet encryption), this will allow the clients to encrypt data before uploading to the cloud and store the key themselves. This means that data will be rendered to the cloud in an unreadable and secure format that cannot be accessed by unauthorized persons.