Visible to the public Biblio

Found 120 results

Filters: Keyword is Virtual machining  [Clear All Filters]
2022-05-12
Aribisala, Adedayo, Khan, Mohammad S., Husari, Ghaith.  2021.  MACHINE LEARNING ALGORITHMS AND THEIR APPLICATIONS IN CLASSIFYING CYBER-ATTACKS ON A SMART GRID NETWORK. 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0063–0069.
Smart grid architecture and Software-defined Networking (SDN) have evolved into a centrally controlled infrastructure that captures and extracts data in real-time through sensors, smart-meters, and virtual machines. These advances pose a risk and increase the vulnerabilities of these infrastructures to sophisticated cyberattacks like distributed denial of service (DDoS), false data injection attack (FDIA), and Data replay. Integrating machine learning with a network intrusion detection system (NIDS) can improve the system's accuracy and precision when detecting suspicious signatures and network anomalies. Analyzing data in real-time using trained and tested hyperparameters on a network traffic dataset applies to most network infrastructures. The NSL-KDD dataset implemented holds various classes, attack types, protocol suites like TCP, HTTP, and POP, which are critical to packet transmission on a smart grid network. In this paper, we leveraged existing machine learning (ML) algorithms, Support vector machine (SVM), K-nearest neighbor (KNN), Random Forest (RF), Naïve Bayes (NB), and Bagging; to perform a detailed performance comparison of selected classifiers. We propose a multi-level hybrid model of SVM integrated with RF for improved accuracy and precision during network filtering. The hybrid model SVM-RF returned an average accuracy of 94% in 10-fold cross-validation and 92.75%in an 80-20% split during class classification.
Morbitzer, Mathias, Proskurin, Sergej, Radev, Martin, Dorfhuber, Marko, Salas, Erick Quintanar.  2021.  SEVerity: Code Injection Attacks against Encrypted Virtual Machines. 2021 IEEE Security and Privacy Workshops (SPW). :444–455.

Modern enterprises increasingly take advantage of cloud infrastructures. Yet, outsourcing code and data into the cloud requires enterprises to trust cloud providers not to meddle with their data. To reduce the level of trust towards cloud providers, AMD has introduced Secure Encrypted Virtualization (SEV). By encrypting Virtual Machines (VMs), SEV aims to ensure data confidentiality, despite a compromised or curious Hypervisor. The SEV Encrypted State (SEV-ES) extension additionally protects the VM’s register state from unauthorized access. Yet, both extensions do not provide integrity of the VM’s memory, which has already been abused to leak the protected data or to alter the VM’s control-flow. In this paper, we introduce the SEVerity attack; a missing puzzle piece in the series of attacks against the AMD SEV family. Specifically, we abuse the system’s lack of memory integrity protection to inject and execute arbitrary code within SEV-ES-protected VMs. Contrary to previous code execution attacks against the AMD SEV family, SEVerity neither relies on a specific CPU version nor on any code gadgets inside the VM. Instead, SEVerity abuses the fact that SEV-ES prohibits direct memory access into the encrypted memory. Specifically, SEVerity injects arbitrary code into the encrypted VM through I/O channels and uses the Hypervisor to locate and trigger the execution of the encrypted payload. This allows us to sidestep the protection mechanisms of SEV-ES. Overall, our results demonstrate a success rate of 100% and hence highlight that memory integrity protection is an obligation when encrypting VMs. Consequently, our work presents the final stroke in a series of attacks against AMD SEV and SEV-ES and renders the present implementation as incapable of protecting against a curious, vulnerable, or malicious Hypervisor.

Li, Shih-Wei, Li, Xupeng, Gu, Ronghui, Nieh, Jason, Zhuang Hui, John.  2021.  A Secure and Formally Verified Linux KVM Hypervisor. 2021 IEEE Symposium on Security and Privacy (SP). :1782–1799.

Commodity hypervisors are widely deployed to support virtual machines (VMs) on multiprocessor hardware. Their growing complexity poses a security risk. To enable formal verification over such a large codebase, we introduce microverification, a new approach that decomposes a commodity hypervisor into a small core and a set of untrusted services so that we can prove security properties of the entire hypervisor by verifying the core alone. To verify the multiprocessor hypervisor core, we introduce security-preserving layers to modularize the proof without hiding information leakage so we can prove each layer of the implementation refines its specification, and the top layer specification is refined by all layers of the core implementation. To verify commodity hypervisor features that require dynamically changing information flow, we introduce data oracles to mask intentional information flow. We can then prove noninterference at the top layer specification and guarantee the resulting security properties hold for the entire hypervisor implementation. Using microverification, we retrofitted the Linux KVM hypervisor with only modest modifications to its codebase. Using Coq, we proved that the hypervisor protects the confidentiality and integrity of VM data, while retaining KVM’s functionality and performance. Our work is the first machine-checked security proof for a commodity multiprocessor hypervisor.

Li, Fulin, Ji, Huifang, Zhou, Hongwei, Zhang, Chang.  2021.  A Dynamic and Secure Migration Method of Cryptographic Service Virtual Machine for Cloud Environment. 2021 7th International Conference on Computer and Communications (ICCC). :583–588.
In order to improve the continuity of cryptographic services and ensure the quality of services in the cloud environment, a dynamic migration framework of cryptographic service virtual machines based on the network shared storage system is proposed. Based on the study of the security threats in the migration process, a dynamic migration attack model is established, and the security requirement of dynamic migration is analyzed. It designs and implements the dynamic security migration management software, which includes a dynamic migration security enhancement module based on the Libvirt API, role-based access control policy, and transmission channel protection module. A cryptographic service virtual machine migration environment is built, and the designed management software and security mechanism are verified and tested. The experimental results show that the method proposed in the paper can effectively improve the security of cryptographic service virtual machine migration.
Aldawood, Mansour, Jhumka, Arshad.  2021.  Secure Allocation for Graph-Based Virtual Machines in Cloud Environments. 2021 18th International Conference on Privacy, Security and Trust (PST). :1–7.

Cloud computing systems (CCSs) enable the sharing of physical computing resources through virtualisation, where a group of virtual machines (VMs) can share the same physical resources of a given machine. However, this sharing can lead to a so-called side-channel attack (SCA), widely recognised as a potential threat to CCSs. Specifically, malicious VMs can capture information from (target) VMs, i.e., those with sensitive information, by merely co-located with them on the same physical machine. As such, a VM allocation algorithm needs to be cognizant of this issue and attempts to allocate the malicious and target VMs onto different machines, i.e., the allocation algorithm needs to be security-aware. This paper investigates the allocation patterns of VM allocation algorithms that are more likely to lead to a secure allocation. A driving objective is to reduce the number of VM migrations during allocation. We also propose a graph-based secure VMs allocation algorithm (GbSRS) to minimise SCA threats. Our results show that algorithms following a stacking-based behaviour are more likely to produce secure VMs allocation than those following spreading or random behaviours.

Marian, Constantin Viorel.  2021.  DNS Records Secure Provisioning Mechanism for Virtual Machines automatic management in high density data centers. 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1–5.

Nowadays is becoming trivial to have multiple virtual machines working in parallel on hardware platforms with high processing power. This appropriate cost effective approach can be found at Internet Service Providers, in cloud service providers’ environments, in research and development lab testing environment (for example Universities’ student’s lab), in virtual application for security evaluation and in many other places. In the aforementioned cases, it is often necessary to start and/or stop virtual machines on the fly. In cloud service providers all the creation / tear down actions are triggered by a customer request and cannot be postponed or delayed for later evaluation. When a new virtual machine is created, it is imperative to assign unique IP addresses to all network interfaces and also domain name system DNS records that contain text based data, IP addresses, etc. Even worse, if a virtual machine has to be stopped or torn down, the critical network resources such as IP addresses and DNS records have to be carefully controlled in order to avoid IP addresses conflicts and name resolution problems between an old virtual machine and a newly created virtual machine. This paper proposes a provisioning mechanism to avoid both DNS records and IP addresses conflicts due to human misconfiguration, problems that can cause networking operation service disruptions.

2022-04-19
Giechaskiel, Ilias, Tian, Shanquan, Szefer, Jakub.  2021.  Cross-VM Information Leaks in FPGA-Accelerated Cloud Environments. 2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :91–101.
The availability of FPGAs in cloud data centers offers rapid, on-demand access to hardware compute resources that users can configure to their own needs. However, the low-level access to the hardware FPGA and associated resources such as PCIe, SSD, or DRAM also opens up threats of malicious attackers uploading designs that are able to infer information about other users or about the cloud infrastructure itself. In particular, this work presents a new, fast PCIe-contention-based channel that is able to transmit data between different FPGA-accelerated virtual machines with bandwidths reaching 2 kbps with 97% accuracy. This paper further demonstrates that the PCIe receiver circuits are able to not just receive covert transmissions, but can also perform fine-grained monitoring of the PCIe bus or detect different types of activities from other users' FPGA-accelerated virtual machines based on their PCIe traffic signatures. Beyond leaking information across different virtual machines, the ability to monitor the PCIe bandwidth over hours or days can be used to estimate the data center utilization and map the behavior of the other users. The paper also introduces further novel threats in FPGA-accelerated instances, including contention due to shared NVMe SSDs as well as thermal monitoring to identify FPGA co-location using the DRAM modules attached to the FPGA boards. This is the first work to demonstrate that it is possible to break the separation of privilege in FPGA-accelerated cloud environments, and highlights that defenses for public clouds using FPGAs need to consider PCIe, SSD, and DRAM resources as part of the attack surface that should be protected.
2022-03-14
Lusky, Yehonatan, Mendelson, Avi.  2021.  Sandbox Detection Using Hardware Side Channels. 2021 22nd International Symposium on Quality Electronic Design (ISQED). :192—197.
A common way to detect malware attacks and avoid their destructive impact on a system is the use of virtual machines; A.K.A sandboxing. Attackers, on the other hand, strive to detect sandboxes when their software is running under such a virtual environment. Accordingly, they postpone launching any attack (Malware) as long as operating under such an execution environment. Thus, it is common among malware developers to utilize different sandbox detection techniques (sometimes referred to as Anti-VM or Anti-Virtualization techniques). In this paper, we present novel, side-channel-based techniques to detect sandboxes. We show that it is possible to detect even sandboxes that were properly configured and so far considered to be detection-proof. This paper proposes and implements the first attack which leverage side channels leakage between sibling logical cores to determine the execution environment.
2022-02-22
Torquato, Matheus, Vieira, Marco.  2021.  VM Migration Scheduling as Moving Target Defense against Memory DoS Attacks: An Empirical Study. 2021 IEEE Symposium on Computers and Communications (ISCC). :1—6.
Memory Denial of Service (DoS) attacks are easy-to-launch, hard to detect, and significantly impact their targets. In memory DoS, the attacker targets the memory of his Virtual Machine (VM) and, due to hardware isolation issues, the attack affects the co-resident VMs. Theoretically, we can deploy VM migration as Moving Target Defense (MTD) against memory DoS. However, the current literature lacks empirical evidence supporting this hypothesis. Moreover, there is a need to evaluate how the VM migration timing impacts the potential MTD protection. This practical experience report presents an experiment on VM migration-based MTD against memory DoS. We evaluate the impact of memory DoS attacks in the context of two applications running in co-hosted VMs: machine learning and OLTP. The results highlight that the memory DoS attacks lead to more than 70% reduction in the applications' performance. Nevertheless, timely VM migrations can significantly mitigate the attack effects in both considered applications.
2022-01-31
Shvidkiy, A. A., Savelieva, A. A., Zarubin, A. A..  2021.  Caching Methods Analysis for Improving Distributed Storage Systems Performance. 2021 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO. :1—5.
The object of the research is distributed software-defined storage systems, as well as methods of caching disk devices. It is important for improving the performance of storage systems, which is relevant in modern conditions. In this article, an assessment of the possibility of improving performance through the use of various caching methods is made, as well as experimental research and analysis of the results obtained. The parameters of the application's operation with the disk subsystem have been determined. The results of experiments are presented - testing was carried out on a deployed architecture of a distributed storage with two types of caching, the results are combined in graphs. Conclusions are drawn, including on the prospects for further research.
2022-01-25
Ozga, Wojciech, Le Quoc, Do, Fetzer, Christof.  2021.  TRIGLAV: Remote Attestation of the Virtual Machine's Runtime Integrity in Public Clouds. 2021 IEEE 14th International Conference on Cloud Computing (CLOUD). :1–12.
Trust is of paramount concern for tenants to deploy their security-sensitive services in the cloud. The integrity of virtual machines (VMs) in which these services are deployed needs to be ensured even in the presence of powerful adversaries with administrative access to the cloud. Traditional approaches for solving this challenge leverage trusted computing techniques, e.g., vTPM, or hardware CPU extensions, e.g., AMD SEV. But, they are vulnerable to powerful adversaries, or they provide only load time (not runtime) integrity measurements of VMs. We propose TRIGLAV, a protocol allowing tenants to establish and maintain trust in VM runtime integrity of software and its configuration. TRIGLAV is transparent to the VM configuration and setup. It performs an implicit attestation of VMs during a secure login and binds the VM integrity state with the secure connection. Our prototype's evaluation shows that TRIGLAV is practical and incurs low performance overhead (\textbackslashtextless 6%).
2021-12-20
Mahboob, Jamal, Coffman, Joel.  2021.  A Kubernetes CI/CD Pipeline with Asylo as a Trusted Execution Environment Abstraction Framework. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0529–0535.
Modern commercial software development organizations frequently prescribe to a development and deployment pattern for releases known as continuous integration / continuous deployment (CI/CD). Kubernetes, a cluster-based distributed application platform, is often used to implement this pattern. While the abstract concept is fairly well understood, CI/CD implementations vary widely. Resources are scattered across on-premise and cloud-based services, and systems may not be fully automated. Additionally, while a development pipeline may aim to ensure the security of the finished artifact, said artifact may not be protected from outside observers or cloud providers during execution. This paper describes a complete CI/CD pipeline running on Kubernetes that addresses four gaps in existing implementations. First, the pipeline supports strong separation-of-duties, partitioning development, security, and operations (i.e., DevSecOps) roles. Second, automation reduces the need for a human interface. Third, resources are scoped to a Kubernetes cluster for portability across environments (e.g., public cloud providers). Fourth, deployment artifacts are secured with Asylo, a development framework for trusted execution environments (TEEs).
Guri, Mordechai.  2021.  LANTENNA: Exfiltrating Data from Air-Gapped Networks via Ethernet Cables Emission. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :745–754.
In this paper we present LANTENNA - a new type of an electromagnetic attack allowing adversaries to leak sensitive data from isolated, air-gapped networks. Malicious code in air-gapped computers gathers sensitive data and then encodes it over radio waves emanated from Ethernet cables. A nearby receiving device can intercept the signals wirelessly, decodes the data and sends it to the attacker. We discuss the exiltration techniques, examine the covert channel characteristics, and provide implementation details. Notably, the malicious code can run in an ordinary user mode process, and can successfully operates from within a virtual machine. We evaluate the covert channel in different scenarios and present a set of of countermeasures. Our experiments show that with the LANTENNA attack, data can be exfiltrated from air-gapped computers to a distance of several meters away.
2021-11-08
Qian, Dazan, Guo, Songhui, Sun, Lei, Liu, Haidong, Hao, Qianfang, Zhang, Jing.  2020.  Trusted Virtual Network Function Based on vTPM. 2020 7th International Conference on Information Science and Control Engineering (ICISCE). :1484–1488.
Mobile communication technology is developing rapidly, and this is integrated with technologies such as Software Defined Network (SDN), cloud computing, and Network Function Virtualization (NFV). Network Functions (NFs) are no longer deployed on dedicated hardware devices, while deployed in Virtual Machines (VMs) or containers as Virtual Network Functions (VNFs). If VNFs are tampered with or replaced, the communication system will not function properly. Our research is to enhance the security of VNFs using trusted computing technology. By adding Virtual Trusted Platform Module (vTPM) to the virtualization platform, the chain of trust extends from the VM operating system to VNFs within the VM. Experimental results prove that the solution can effectively protect the integrity of VNFs from being attacked.
2021-10-04
Moustafa, Nour, Keshky, Marwa, Debiez, Essam, Janicke, Helge.  2020.  Federated TONİoT Windows Datasets for Evaluating AI-Based Security Applications. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :848–855.
Existing cyber security solutions have been basically developed using knowledge-based models that often cannot trigger new cyber-attack families. With the boom of Artificial Intelligence (AI), especially Deep Learning (DL) algorithms, those security solutions have been plugged-in with AI models to discover, trace, mitigate or respond to incidents of new security events. The algorithms demand a large number of heterogeneous data sources to train and validate new security systems. This paper presents the description of new datasets, the so-called ToNİoT, which involve federated data sources collected from Telemetry datasets of IoT services, Operating system datasets of Windows and Linux, and datasets of Network traffic. The paper introduces the testbed and description of TONİoT datasets for Windows operating systems. The testbed was implemented in three layers: edge, fog and cloud. The edge layer involves IoT and network devices, the fog layer contains virtual machines and gateways, and the cloud layer involves cloud services, such as data analytics, linked to the other two layers. These layers were dynamically managed using the platforms of software-Defined Network (SDN) and Network-Function Virtualization (NFV) using the VMware NSX and vCloud NFV platform. The Windows datasets were collected from audit traces of memories, processors, networks, processes and hard disks. The datasets would be used to evaluate various AI-based cyber security solutions, including intrusion detection, threat intelligence and hunting, privacy preservation and digital forensics. This is because the datasets have a wide range of recent normal and attack features and observations, as well as authentic ground truth events. The datasets can be publicly accessed from this link [1].
2021-09-30
Shuang, Zhang, Xinyu, Wan, Deqi, Kong, Yangming, Guo.  2020.  Embedded Virtualization Computing Platform Security Architecture Based on Trusted Computing. 2020 7th International Conference on Dependable Systems and Their Applications (DSA). :1–5.
With the application of virtualization and multi-core processor in embedded system, the computing capacity of embedded system has been improved comprehensively, but it is also faced with malicious attacks against virtualization technology. First, it was analyzed the security requirements of each layer of embedded virtualization computing platform. Aiming at the security requirements, it was proposed the security architecture of embedded virtualization computing platform based on trusted computing module. It was designed the hardware trusted root on the hardware layer, the virtualization trusted root on the virtual machine manager layer, trusted computing component and security function component on guest operation system layer. Based on the trusted roots, it was built the static extension of the trusted chain on the platform. This security architecture can improve the active security protection capability of embedded virtualization computing platform.
2021-09-21
Vurdelja, Igor, Blažić, Ivan, Bojić, Dragan, Drašković, Dražen.  2020.  A framework for automated dynamic malware analysis for Linux. 2020 28th Telecommunications Forum (℡FOR). :1–4.
Development of malware protection tools requires a more advanced test environment comparing to safe software. This kind of development includes a safe execution of many malware samples in order to evaluate the protective power of the tool. The host machine needs to be protected from the harmful effects of malware samples and provide a realistic simulation of the execution environment. In this paper, a framework for automated malware analysis on Linux is presented. Different types of malware analysis methods are discussed, as well as the properties of a good framework for dynamic malware analysis.
2021-09-16
Ullman, Steven, Samtani, Sagar, Lazarine, Ben, Zhu, Hongyi, Ampel, Benjamin, Patton, Mark, Chen, Hsinchun.  2020.  Smart Vulnerability Assessment for Scientific Cyberinfrastructure: An Unsupervised Graph Embedding Approach. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1–6.
The accelerated growth of computing technologies has provided interdisciplinary teams a platform for producing innovative research at an unprecedented speed. Advanced scientific cyberinfrastructures, in particular, provide data storage, applications, software, and other resources to facilitate the development of critical scientific discoveries. Users of these environments often rely on custom developed virtual machine (VM) images that are comprised of a diverse array of open source applications. These can include vulnerabilities undetectable by conventional vulnerability scanners. This research aims to identify the installed applications, their vulnerabilities, and how they vary across images in scientific cyberinfrastructure. We propose a novel unsupervised graph embedding framework that captures relationships between applications, as well as vulnerabilities identified on corresponding GitHub repositories. This embedding is used to cluster images with similar applications and vulnerabilities. We evaluate cluster quality using Silhouette, Calinski-Harabasz, and Davies-Bouldin indices, and application vulnerabilities through inspection of selected clusters. Results reveal that images pertaining to genomics research in our research testbed are at greater risk of high-severity shell spawning and data validation vulnerabilities.
2021-08-02
Fargo, Farah, Franza, Olivier, Tunc, Cihan, Hariri, Salim.  2020.  VM Introspection-based Allowlisting for IaaS. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1—4.
Cloud computing has become the main backend of the IT infrastructure as it provides ubiquitous and on-demand computing to serve to a wide range of users including end-users and high-performance demanding agencies. The users can allocate and free resources allocated for their Virtual Machines (VMs) as needed. However, with the rapid growth of interest in cloud computing systems, several issues have arisen especially in the domain of cybersecurity. It is a known fact that not only the malicious users can freely allocate VMs, but also they can infect victims' VMs to run their own tools that include cryptocurrency mining, ransomware, or cyberattacks against others. Even though there exist intrusion detection systems (IDS), running an IDS on every VM can be a costly process and it would require fine configuration that only a small subset of the cloud users are knowledgeable about. Therefore, to overcome this challenge, in this paper we present a VM introspection based allowlisting method to be deployed and managed directly by the cloud providers to check if there are any malicious software running on the VMs with minimum user intervention. Our middleware monitors the processes and if it detects unknown events, it will notify the users and/or can take action as needed.
2021-07-08
Sato, Masaya, Taniguchi, Hideo, Nakamura, Ryosuke.  2020.  Virtual Machine Monitor-based Hiding Method for Access to Debug Registers. 2020 Eighth International Symposium on Computing and Networking (CANDAR). :209—214.
To secure a guest operating system running on a virtual machine (VM), a monitoring method using hardware breakpoints by a virtual machine monitor is required. However, debug registers are visible to guest operating systems; thus, malicious programs on a guest operating system can detect or disable the monitoring method. This paper presents a method to hide access to debug registers from programs running on a VM. Our proposed method detects programs' access to debug registers and disguises the access as having succeeded. The register's actual value is not visible or modifiable to programs, so the monitoring method is hidden. This paper presents the basic design and evaluation results of our method.
Dovgalyuk, Pavel, Vasiliev, Ivan, Fursova, Natalia, Dmitriev, Denis, Abakumov, Mikhail, Makarov, Vladimir.  2020.  Non-intrusive Virtual Machine Analysis and Reverse Debugging with SWAT. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :196—203.
This paper presents SWAT - System-Wide Analysis Toolkit. It is based on open source emulation and debugging projects and implements the approaches for non-intrusive system-wide analysis and debugging: lightweight OS-agnostic virtual machine introspection, full system execution replay, non-intrusive debugging with WinDbg, and full system reverse debugging. These features are based on novel non-intrusive introspection and reverse debugging methods. They are useful for stealth debugging and analysis of the platforms with custom kernels. SWAT includes multi-platform emulator QEMU with additional instrumentation and debugging features, GUI for convenient QEMU setup and execution, QEMU plugin for non-intrusive introspection, and modified version of GDB. Our toolkit may be useful for the developers of the virtual platforms, emulators, and firmwares/drivers/operating systems. Virtual machine intospection approach does not require loading any guest agents and source code of the OS. Therefore it may be applied to ROM-based guest systems and enables using of record/replay of the system execution. This paper includes the description of SWAT components, analysis methods, and some SWAT use cases.
Flores, Hugo, Tran, Vincent, Tang, Bin.  2020.  PAM PAL: Policy-Aware Virtual Machine Migration and Placement in Dynamic Cloud Data Centers. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2549—2558.
We focus on policy-aware data centers (PADCs), wherein virtual machine (VM) traffic traverses a sequence of middleboxes (MBs) for security and performance purposes, and propose two new VM placement and migration problems. We first study PAL: policy-aware virtual machine placement. Given a PADC with a data center policy that communicating VM pairs must satisfy, the goal of PAL is to place the VMs into the PADC to minimize their total communication cost. Due to dynamic traffic loads in PADCs, however, above VM placement may no longer be optimal after some time. We thus study PAM: policy-aware virtual machine migration. Given an existing VM placement in the PADC and dynamic traffic rates among communicating VMs, PAM migrates VMs in order to minimize the total cost of migration and communication of the VM pairs. We design optimal, approximation, and heuristic policyaware VM placement and migration algorithms. Our experiments show that i) VM migration is an effective technique, reducing total communication cost of VM pairs by 25%, ii) our PAL algorithms outperform state-of-the-art VM placement algorithm that is oblivious to data center policies by 40-50%, and iii) our PAM algorithms outperform the only existing policy-aware VM migration scheme by 30%.
Long, Vu Duc, Duong, Ta Nguyen Binh.  2020.  Group Instance: Flexible Co-Location Resistant Virtual Machine Placement in IaaS Clouds. 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). :64—69.
This paper proposes and analyzes a new virtual machine (VM) placement technique called Group Instance to deal with co-location attacks in public Infrastructure-as-a-Service (IaaS) clouds. Specifically, Group Instance organizes cloud users into groups with pre-determined sizes set by the cloud provider. Our empirical results obtained via experiments with real-world data sets containing million of VM requests have demonstrated the effectiveness of the new technique. In particular, the advantages of Group Instance are three-fold: 1) it is simple and highly configurable to suit the financial and security needs of cloud providers, 2) it produces better or at least similar performance compared to more complicated, state-of-the-art algorithms in terms of resource utilization and co-location security, and 3) it does not require any modifications to the underlying infrastructures of existing public cloud services.
Long, Saiqin, Li, Zhetao, Xing, Yun, Tian, Shujuan, Li, Dongsheng, Yu, Rong.  2020.  A Reinforcement Learning-Based Virtual Machine Placement Strategy in Cloud Data Centers. :223—230.
{With the widespread use of cloud computing, energy consumption of cloud data centers is increasing which mainly comes from IT equipment and cooling equipment. This paper argues that once the number of virtual machines on the physical machines reaches a certain level, resource competition occurs, resulting in a performance loss of the virtual machines. Unlike most papers, we do not impose placement constraints on virtual machines by giving a CPU cap to achieve the purpose of energy savings in cloud data centers. Instead, we use the measure of performance loss to weigh. We propose a reinforcement learning-based virtual machine placement strategy(RLVMP) for energy savings in cloud data centers. The strategy considers the weight of virtual machine performance loss and energy consumption, which is finally solved with the greedy strategy. Simulation experiments show that our strategy has a certain improvement in energy savings compared with the other algorithms.
Chaturvedi, Amit Kumar, Kumar, Punit, Sharma, Kalpana.  2020.  Proposing Innovative Intruder Detection System for Host Machines in Cloud Computing. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). :292—296.
There is very significant role of Virtualization in cloud computing. The physical hardware in the cloud computing reside with the host machine and the virtualization software runs on it. The virtualization allows virtual machines to exist. The host machine shares its physical components such as memory, storage, and processor ultimately to handle the needs of the virtual machines. If an attacker effectively compromises one VM, it could outbreak others on the same host on the network over long periods of time. This is an gradually more popular method for cross-virtual-machine attacks, since traffic between VMs cannot be examined by standard IDS/IPS software programs. As we know that the cloud environment is distributed in nature and hence more susceptible to various types of intrusion attacks which include installing malicious software and generating backdoors. In a cloud environment, where organizations have hosted important and critical data, the security of underlying technologies becomes critical. To alleviate the hazard to cloud environments, Intrusion Detection Systems (IDS) are a cover of defense. In this paper, we are proposing an innovative model for Intrusion Detection System for securing Host machines in cloud infrastructure. This proposed IDS has two important features: (1) signature based and (2) prompt alert system.