Biblio
Federated cloud networks are formed by federating virtual network segments from different clouds, e.g. in a hybrid cloud, into a single federated network. Such networks should be protected with a global federated cloud network security policy. The availability of network function virtualisation and service function chaining in cloud platforms offers an opportunity for implementing and enforcing global federated cloud network security policies. In this paper we describe an approach for enforcing global security policies in federated cloud networks. The approach relies on a service manifest that specifies the global network security policy. From this manifest configurations of the security functions for the different clouds of the federation are generated. This enables automated deployment and configuration of network security functions across the different clouds. The approach is illustrated with a case study where communications between trusted and untrusted clouds, e.g. public clouds, are encrypted. The paper discusses future work on implementing this architecture for the OpenStack cloud platform with the service function chaining API.
Hypervisors are the main components for managing virtual machines on cloud computing systems. Thus, the security of hypervisors is very crucial as the whole system could be compromised when just one vulnerability is exploited. In this paper, we assess the vulnerabilities of widely used hypervisors including VMware ESXi, Citrix XenServer and KVM using the NIST 800-115 security testing framework. We perform real experiments to assess the vulnerabilities of those hypervisors using security testing tools. The results are evaluated using weakness information from CWE, and using vulnerability information from CVE. We also compute the severity scores using CVSS information. All vulnerabilities found of three hypervisors will be compared in terms of weaknesses, severity scores and impact. The experimental results showed that ESXi and XenServer have common weaknesses and vulnerabilities whereas KVM has fewer vulnerabilities. In addition, we discover a new vulnerability called HTTP response splitting on ESXi Web interface.
Cloud computing is revolutionizing many IT ecosystems through offering scalable computing resources that are easy to configure, use and inter-connect. However, this model has always been viewed with some suspicion as it raises a wide range of security and privacy issues that need to be negotiated. This research focuses on the construction of a trust layer in cloud computing to build a trust relationship between cloud service providers and cloud users. In particular, we address the rise of container-based virtualisation has a weak isolation compared to traditional VMs because of the shared use of the OS kernel and system components. Therefore, we will build a trust layer to solve the issues of weaker isolation whilst maintaining the performance and scalability of the approach. This paper has two objectives. Firstly, we propose a security system to protect containers from other guests through the addition of a Role-based Access Control (RBAC) model and the provision of strict data protection and security. Secondly, we provide a stress test using isolation benchmarking tools to evaluate the isolation in containers in term of performance.
Because of poor performance of heuristic algorithms on virtual machine placement problem in cloud environments, a multi-objective constraint optimization model of virtual machine placement is presented, which taking energy consumption and resource wastage as the objective. We solve the model based on the proposed discrete firefly algorithm. It takes firefly's location as the placement result, brightness as the objective value. Its movement strategy makes darker fireflies move to brighter fireflies in solution space. The continuous position after movement is discretized by the proposed discrete strategy. In order to speed up the search for solution, the local search mechanism for the optimal solution is introduced. The experimental results in OpenStack cloud platform show that the proposed algorithm makes less energy consumption and resource wastage compared with other algorithms.
In this paper a joint algorithm was designed to detect a variety of unauthorized access risks in multilevel hybrid cloud. First of all, the access history is recorded among different virtual machines in multilevel hybrid cloud using the global flow diagram. Then, the global flow graph is taken as auxiliary decision-making basis to design legitimacy detection algorithm based data access and is represented by formal representation, Finally the implement process was specified, and the algorithm can effectively detect operating against regulations such as simple unauthorized level across, beyond indirect unauthorized and other irregularities.
Due to a rapid revaluation in a virtualization environment, Virtual Machines (VMs) are target point for an attacker to gain privileged access of the virtual infrastructure. The Advanced Persistent Threats (APTs) such as malware, rootkit, spyware, etc. are more potent to bypass the existing defense mechanisms designed for VM. To address this issue, Virtual Machine Introspection (VMI) emerged as a promising approach that monitors run state of the VM externally from hypervisor. However, limitation of VMI lies with semantic gap. An open source tool called LibVMI address the semantic gap. Memory Forensic Analysis (MFA) tool such as Volatility can also be used to address the semantic gap. But, it needs to capture a memory dump (RAM) as input. Memory dump acquires time and its analysis time is highly crucial if Intrusion Detection System IDS (IDS) depends on the data supplied by FAM or VMI tool. In this work, live virtual machine RAM dump acquire time of LibVMI is measured. In addition, captured memory dump analysis time consumed by Volatility is measured and compared with other memory analyzer such as Rekall. It is observed through experimental results that, Rekall takes more execution time as compared to Volatility for most of the plugins. Further, Volatility and Rekall are compared with LibVMI. It is noticed that examining the volatile data through LibVMI is faster as it eliminates memory dump acquire time.
As multi-tenant authorization and federated identity management systems for cloud computing matures, the provisioning of services using this paradigm allows maximum efficiency on business that requires access control. However, regarding scalability support, mainly horizontal, some characteristics of those approaches based on central authentication protocols are problematic. The objective of this work is to address these issues by providing an adapted sticky-session mechanism for a Shibboleth architecture using CAS. This alternative, compared with the recommended shared memory approach, shown improved efficiency and less overall infrastructure complexity.
Malicious applications can be introduced to attack users and services so as to gain financial rewards, individuals' sensitive information, company and government intellectual property, and to gain remote control of systems. However, traditional methods of malicious code detection, such as signature detection, behavior detection, virtual machine detection, and heuristic detection, have various weaknesses which make them unreliable. This paper presents the existing technologies of malicious code detection and a malicious code detection model is proposed based on behavior association. The behavior points of malicious code are first extracted through API monitoring technology and integrated into the behavior; then a relation between behaviors is established according to data dependence. Next, a behavior association model is built up and a discrimination method is put forth using pushdown automation. Finally, the exact malicious code is taken as a sample to carry out an experiment on the behavior's capture, association, and discrimination, thus proving that the theoretical model is viable.
Cloud computing brings in a lot of advantages for enterprise IT infrastructure; virtualization technology, which is the backbone of cloud, provides easy consolidation of resources, reduction of cost, space and management efforts. However, security of critical and private data is a major concern which still keeps back a lot of customers from switching over from their traditional in-house IT infrastructure to a cloud service. Existence of techniques to physically locate a virtual machine in the cloud, proliferation of software vulnerability exploits and cross-channel attacks in-between virtual machines, all of these together increases the risk of business data leaks and privacy losses. This work proposes a framework to mitigate such risks and engineer customer trust towards enterprise cloud computing. Everyday new vulnerabilities are being discovered even in well-engineered software products and the hacking techniques are getting sophisticated over time. In this scenario, absolute guarantee of security in enterprise wide information processing system seems a remote possibility; software systems in the cloud are vulnerable to security attacks. Practical solution for the security problems lies in well-engineered attack mitigation plan. At the positive side, cloud computing has a collective infrastructure which can be effectively used to mitigate the attacks if an appropriate defense framework is in place. We propose such an attack mitigation framework for the cloud. Software vulnerabilities in the cloud have different severities and different impacts on the security parameters (confidentiality, integrity, and availability). By using Markov model, we continuously monitor and quantify the risk of compromise in different security parameters (e.g.: change in the potential to compromise the data confidentiality). Whenever, there is a significant change in risk, our framework would facilitate the tenants to calculate the Mean Time to Security Failure (MTTSF) cloud and allow them to adopt a dynamic mitigation plan. This framework is an add-on security layer in the cloud resource manager and it could improve the customer trust on enterprise cloud solutions.
As multi-tenant authorization and federated identity management systems for cloud computing matures, the provisioning of services using this paradigm allows maximum efficiency on business that requires access control. However, regarding scalability support, mainly horizontal, some characteristics of those approaches based on central authentication protocols are problematic. The objective of this work is to address these issues by providing an adapted sticky-session mechanism for a Shibboleth architecture using CAS. This alternative, compared with the recommended shared memory approach, shown improved efficiency and less overall infrastructure complexity.
Malicious applications can be introduced to attack users and services so as to gain financial rewards, individuals' sensitive information, company and government intellectual property, and to gain remote control of systems. However, traditional methods of malicious code detection, such as signature detection, behavior detection, virtual machine detection, and heuristic detection, have various weaknesses which make them unreliable. This paper presents the existing technologies of malicious code detection and a malicious code detection model is proposed based on behavior association. The behavior points of malicious code are first extracted through API monitoring technology and integrated into the behavior; then a relation between behaviors is established according to data dependence. Next, a behavior association model is built up and a discrimination method is put forth using pushdown automation. Finally, the exact malicious code is taken as a sample to carry out an experiment on the behavior's capture, association, and discrimination, thus proving that the theoretical model is viable.
Identity management system has gained significance for any organization today for not only storing details of its employees but securing its sensitive information and safely managing access to its resources. This system being an enterprise based application has time taking deployment process, involving many complex and error prone steps. Also being globally used, its continuous running on servers lead to large carbon emissions. This paper proposes a novel architecture that integrates the Identity management system together with virtual appliance technology to reduce the overall deployment time of the system. It provides an Identity management system as pre-installed, pre-configured and ready to go solution that can be easily deployed even by a common user. The proposed architecture is implemented and the results have shown that there is decrease in deployment time and decrease in number of steps required in previous architecture. The hardware required by the application is also reduced as its deployed on virtual machine monitor platform, which can be installed on already used servers. This contributes to the green computing practices and gives costs benefits for enterprises. Also there is ease of migration of system from one server to another and the enterprises which do not want to depend on third party cloud for security and cost reasons, can easily deploy their identity management system in their own premises.
In cloud data center, shared storage with good management is a main structure used for the storage of virtual machines (VM). In this paper, we proposed Hybrid VM storage (HVSTO), a privacy preserving shared storage system designed for the virtual machine storage in large-scale cloud data center. Unlike traditional shared storage, HVSTO adopts a distributed structure to preserve privacy of virtual machines, which are a threat in traditional centralized structure. To improve the performance of I/O latency in this distributed structure, we use a hybrid system to combine solid state disk and distributed storage. From the evaluation of our demonstration system, HVSTO provides a scalable and sufficient throughput for the platform as a service infrastructure.
This research focuses on hyper visor security from holistic perspective. It centers on hyper visor architecture - the organization of the various subsystems which collectively compromise a virtualization platform. It holds that the path to a secure hyper visor begins with a big-picture focus on architecture. Unfortunately, little research has been conducted with this perspective. This study investigates the impact of monolithic and micro kernel hyper visor architectures on the size and scope of the attack surface. Six architectural features are compared: management API, monitoring interface, hyper calls, interrupts, networking, and I/O. These subsystems are core hyper visor components which could be used as attack vectors. Specific examples and three leading hyper visor platforms are referenced (ESXi for monolithic architecture; Xen and Hyper-V for micro architecture). The results describe the relative strengths and vulnerabilities of both types of architectures. It is concluded that neither design is more secure, since both incorporate security tradeoffs in core processes.
In recent years, there has been a huge trend towards running network intensive applications, such as Internet servers and Cloud-based service in virtual environment, where multiple virtual machines (VMs) running on the same machine share the machine's physical and network resources. In such environment, the virtual machine monitor (VMM) virtualizes the machine's resources in terms of CPU, memory, storage, network and I/O devices to allow multiple operating systems running in different VMs to operate and access the network concurrently. A key feature of virtualization is live migration (LM) that allows transfer of virtual machine from one physical server to another without interrupting the services running in virtual machine. Live migration facilitates workload balancing, fault tolerance, online system maintenance, consolidation of virtual machines etc. However, live migration is still in an early stage of implementation and its security is yet to be evaluated. The security concern of live migration is a major factor for its adoption by the IT industry. Therefore, this paper uses the X.805 security standard to investigate attacks on live virtual machine migration. The analysis highlights the main source of threats and suggests approaches to tackle them. The paper also surveys and compares different proposals in the literature to secure the live migration.
Threats to modern ICT systems are rapidly changing these days. Organizations are not mainly concerned about virus infestation, but increasingly need to deal with targeted attacks. This kind of attacks are specifically designed to stay below the radar of standard ICT security systems. As a consequence, vendors have begun to ship self-learning intrusion detection systems with sophisticated heuristic detection engines. While these approaches are promising to relax the serious security situation, one of the main challenges is the proper evaluation of such systems under realistic conditions during development and before roll-out. Especially the wide variety of configuration settings makes it hard to find the optimal setup for a specific infrastructure. However, extensive testing in a live environment is not only cumbersome but usually also impacts daily business. In this paper, we therefore introduce an approach of an evaluation setup that consists of virtual components, which imitate real systems and human user interactions as close as possible to produce system events, network flows and logging data of complex ICT service environments. This data is a key prerequisite for the evaluation of modern intrusion detection and prevention systems. With these generated data sets, a system's detection performance can be accurately rated and tuned for very specific settings.
Shared resources are an essential part of cloud computing. Virtualization and multi-tenancy provide a number of advantages for increasing resource utilization and for providing on demand elasticity. However, these cloud features also raise many security concerns related to cloud computing resources. In this paper, we propose an architecture and approach for leveraging the virtualization technology at the core of cloud computing to perform intrusion detection security using hypervisor performance metrics. Through the use of virtual machine performance metrics gathered from hypervisors, such as packets transmitted/received, block device read/write requests, and CPU utilization, we demonstrate and verify that suspicious activities can be profiled without detailed knowledge of the operating system running within the virtual machines. The proposed hypervisor-based cloud intrusion detection system does not require additional software installed in virtual machines and has many advantages compared to host-based and network based intrusion detection systems which can complement these traditional approaches to intrusion detection.
Precise fingerprinting of an operating system (OS) is critical to many security and forensics applications in the cloud, such as virtual machine (VM) introspection, penetration testing, guest OS administration, kernel dump analysis, and memory forensics. The existing OS fingerprinting techniques primarily inspect network packets or CPU states, and they all fall short in precision and usability. As the physical memory of a VM always exists in all these applications, in this article, we present OS-SOMMELIER+, a multi-aspect, memory exclusive approach for precise and robust guest OS fingerprinting in the cloud. It works as follows: given a physical memory dump of a guest OS, OS-SOMMELIER+ first uses a code hash based approach from kernel code aspect to determine the guest OS version. If code hash approach fails, OS-SOMMELIER+ then uses a kernel data signature based approach from kernel data aspect to determine the version. We have implemented a prototype system, and tested it with a number of Linux kernels. Our evaluation results show that the code hash approach is faster but can only fingerprint the known kernels, and data signature approach complements the code signature approach and can fingerprint even unknown kernels.