Omeroglu, Asli Nur, Mohammed, Hussein M. A., Oral, E. Argun, Yucel Ozbek, I..
2022.
Detection of Moving Target Direction for Ground Surveillance Radar Based on Deep Learning. 2022 30th Signal Processing and Communications Applications Conference (SIU). :1–4.
In defense and security applications, detection of moving target direction is as important as the target detection and/or target classification. In this study, a methodology for the detection of different mobile targets as approaching or receding was proposed for ground surveillance radar data, and convolutional neural networks (CNN) based on transfer learning were employed for this purpose. In order to improve the classification performance, the use of two key concepts, namely Deep Convolutional Generative Adversarial Network (DCGAN) and decision fusion, has been proposed. With DCGAN, the number of limited available data used for training was increased, thus creating a bigger training dataset with identical distribution to the original data for both moving directions. This generated synthetic data was then used along with the original training data to train three different pre-trained deep convolutional networks. Finally, the classification results obtained from these networks were combined with decision fusion approach. In order to evaluate the performance of the proposed method, publicly available RadEch dataset consisting of eight ground target classes was utilized. Based on the experimental results, it was observed that the combined use of the proposed DCGAN and decision fusion methods increased the detection accuracy of moving target for person, vehicle, group of person and all target groups, by 13.63%, 10.01%, 14.82% and 8.62%, respectively.
Reijsbergen, Daniël, Maw, Aung, Venugopalan, Sarad, Yang, Dianshi, Tuan Anh Dinh, Tien, Zhou, Jianying.
2022.
Protecting the Integrity of IoT Sensor Data and Firmware With A Feather-Light Blockchain Infrastructure. 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–9.
Smart cities deploy large numbers of sensors and collect a tremendous amount of data from them. For example, Advanced Metering Infrastructures (AMIs), which consist of physical meters that collect usage data about public utilities such as power and water, are an important building block in a smart city. In a typical sensor network, the measurement devices are connected through a computer network, which exposes them to cyber attacks. Furthermore, the data is centrally managed at the operator’s servers, making it vulnerable to insider threats.Our goal is to protect the integrity of data collected by large-scale sensor networks and the firmware in measurement devices from cyber attacks and insider threats. To this end, we first develop a comprehensive threat model for attacks against data and firmware integrity, which can target any of the stakeholders in the operation of the sensor network. Next, we use our threat model to analyze existing defense mechanisms, including signature checks, remote firmware attestation, anomaly detection, and blockchain-based secure logs. However, the large size of the Trusted Computing Base and a lack of scalability limit the applicability of these existing mechanisms. We propose the Feather-Light Blockchain Infrastructure (FLBI) framework to address these limitations. Our framework leverages a two-layer architecture and cryptographic threshold signature chains to support large networks of low-capacity devices such as meters and data aggregators. We have fully implemented the FLBI’s end-to-end functionality on the Hyperledger Fabric and private Ethereum blockchain platforms. Our experiments show that the FLBI is able to support millions of end devices.
Ender, Maik, Leander, Gregor, Moradi, Amir, Paar, Christof.
2022.
A Cautionary Note on Protecting Xilinx’ UltraScale(+) Bitstream Encryption and Authentication Engine. 2022 IEEE 30th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). :1–9.
FPGA bitstream protection schemes are often the first line of defense for secure hardware designs. In general, breaking the bitstream encryption would enable attackers to subvert the confidentiality and infringe on the IP. Or breaking the authenticity enables manipulating the design, e.g., inserting hardware Trojans. Since FPGAs see widespread use in our interconnected world, such attacks can lead to severe damages, including physical harm. Recently we [1] presented a surprising attack — Starbleed — on Xilinx 7-Series FPGAs, tricking an FPGA into acting as a decryption oracle. For their UltraScale(+) series, Xilinx independently upgraded the security features to AES-GCM, RSA signatures, and a periodic GHASH-based checksum to validate the bitstream during decryption. Hence, UltraScale(+) devices were considered not affected by Starbleed-like attacks [2], [1].We identified novel security weaknesses in Xilinx UltraScale(+) FPGAs if configured outside recommended settings. In particular, we present four attacks in this situation: two attacks on the AES encryption and novel GHASH-based checksum and two authentication downgrade attacks. As a major contribution, we show that the Starbleed attack is still possible within the UltraScale(+) series by developing an attack against the GHASH-based checksum. After describing and analyzing the attacks, we list the subtle configuration changes which can lead to security vulnerabilities and secure configurations not affected by our attacks. As Xilinx only recommends configurations not affected by our attacks, users should be largely secure. However, it is not unlikely that users employ settings outside the recommendations, given the rather large number of configuration options and the fact that Security Misconfiguration is among the leading top 10 OWASP security issues. We note that these security weaknesses shown in this paper had been unknown before.
Rahim, Usva, Siddiqui, Muhammad Faisal, Javed, Muhammad Awais, Nafi, Nazmus.
2022.
Architectural Implementation of AES based 5G Security Protocol on FPGA. 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC). :1–6.
Confidentiality and integrity security are the key challenges in future 5G networks. To encounter these challenges, various signature and key agreement protocols are being implemented in 5G systems to secure high-speed mobile-to-mobile communication. Many security ciphers such as SNOW 3G, Advanced Encryption Standard (AES), and ZUC are used for 5G security. Among these protocols, the AES algorithm has been shown to achieve higher hardware efficiency and throughput in the literature. In this paper, we implement the AES algorithm on Field Programmable Gate Array (FPGA) and real-time performance factors of the AES algorithm were exploited to best fit the needs and requirements of 5G. In addition, several modifications such as partial pipelining and deep pipelining (partial pipelining with sub-module pipelining) are implemented on Virtex 6 FPGA ML60S board to improve the throughput of the proposed design.
Shi, Zhixin, Wang, Xiangyu, Liu, Pengcheng.
2022.
NBP-MS: Malware Signature Generation Based on Network Behavior Profiling. 2022 26th International Conference on Pattern Recognition (ICPR). :1865–1870.
With the proliferation of malware, the detection and classification of malware have been hot topics in the academic and industrial circles of cyber security, and the generation of malware signatures is one of the important research directions. In this paper, we propose NBP-MS, a method of signature generation that is based on network traffic generated by malware. Specifically, we utilize the network traffic generated by malware to perform fine-grained profiling of its network behaviors first, and then cluster all the profiles to generate network behavior signatures to classify malware, providing support for subsequent analysis and defense.
Park, Jee-Tae, Baek, Ui-Jun, Kim, Myung-Sup, Lee, Min-Seong, Shin, Chang-Yui.
2022.
Rule-based User Behavior Detection System for SaaS Application. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
SaaS is a cloud-based application service that allows users to use applications that work in a cloud environment. SaaS is a subscription type, and the service expenditure varies depending on the license, the number of users, and duration of use. For efficient network management, security and cost management, accurate detection of user behavior for SaaS applications is required. In this paper, we propose a rule-based traffic analysis method for the user behavior detection. We conduct comparative experiments with signature-based method by using the real SaaS application and demonstrate the validity of the proposed method.
Fujii, Shota, Kawaguchi, Nobutaka, Kojima, Shoya, Suzuki, Tomoya, Yamauchi, Toshihiro.
2022.
Design and Implementation of System for URL Signature Construction and Impact Assessment. 2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI). :95–100.
The attacker’s server plays an important role in sending attack orders and receiving stolen information, particularly in the more recent cyberattacks. Under these circumstances, it is important to use network-based signatures to block malicious communications in order to reduce the damage. However, in addition to blocking malicious communications, signatures are also required not to block benign communications during normal business operations. Therefore, the generation of signatures requires a high level of understanding of the business, and highly depends on individual skills. In addition, in actual operation, it is necessary to test whether the generated signatures do not interfere with benign communications, which results in high operational costs. In this paper, we propose SIGMA, a system that automatically generates signatures to block malicious communication without interfering with benign communication and then automatically evaluates the impact of the signatures. SIGMA automatically extracts the common parts of malware communication destinations by clustering them and generates multiple candidate signatures. After that, SIGMA automatically calculates the impact on normal communication based on business logs, etc., and presents the final signature to the analyst, which has the highest blockability of malicious communication and non-blockability of normal communication. Our objectives with this system are to reduce the human factor in generating the signatures, reduce the cost of the impact evaluation, and support the decision of whether to apply the signatures. In the preliminary evaluation, we showed that SIGMA can automatically generate a set of signatures that detect 100% of suspicious URLs with an over-detection rate of just 0.87%, using the results of 14,238 malware analyses and actual business logs. This result suggests that the cost for generation of signatures and the evaluation of their impact on business operations can be suppressed, which used to be a time-consuming and human-intensive process.
Liu, Dong, Zhu, Yingwei, Du, Haoliang, Ruan, Lixiang.
2022.
Multi-level security defense method of smart substation based on data aggregation and convolution neural network. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1987–1991.
Aiming at the prevention of information security risk in protection and control of smart substation, a multi-level security defense method of substation based on data aggregation and convolution neural network (CNN) is proposed. Firstly, the intelligent electronic device(IED) uses "digital certificate + digital signature" for the first level of identity authentication, and uses UKey identification code for the second level of physical identity authentication; Secondly, the device group of the monitoring layer judges whether the data report is tampered during transmission according to the registration stage and its own ID information, and the device group aggregates the data using the credential information; Finally, the convolution decomposition technology and depth separable technology are combined, and the time factor is introduced to control the degree of data fusion and the number of input channels of the network, so that the network model can learn the original data and fused data at the same time. Simulation results show that the proposed method can effectively save communication overhead, ensure the reliable transmission of messages under normal and abnormal operation, and effectively improve the security defense ability of smart substation.