Visible to the public Biblio

Filters: Keyword is network coding  [Clear All Filters]
2023-02-17
Chanumolu, Kiran Kumar, Ramachandran, Nandhakumar.  2022.  A Study on Various Intrusion Detection Models for Network Coding Enabled Mobile Small Cells. 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS). :963–970.
Mobile small cells that are enabled with Network Coding (NC) are seen as a potentially useful technique for Fifth Generation (5G) networks, since they can cover an entire city and can be put up on demand anywhere, any time, and on any device. Despite numerous advantages, significant security issues arise as a result of the fact that the NC-enabled mobile small cells are vulnerable to attacks. Intrusions are a severe security threat that exploits the inherent vulnerabilities of NC. In order to make NC-enabled mobile small cells to realize their full potential, it is essential to implement intrusion detection systems. When compared to homomorphic signature or hashing systems, homomorphic message authentication codes (MACs) provide safe network coding techniques with relatively smaller overheads. A number of research studies have been conducted with the goal of developing mobile small cells that are enabled with secure network coding and coming up with integrity protocols that are appropriate for such crowded situations. However, the intermediate nodes alter packets while they are in transit and hence the integrity of the data cannot be confirmed by using MACs and checksums. This research study has analyzed numerous intrusion detection models for NC enabled small cells. This research helps the scholars to get a brief idea about various intrusion detection models.
2022-06-06
Nguyen, Vu, Cabrera, Juan A., Pandi, Sreekrishna, Nguyen, Giang T., Fitzek, Frank H. P..  2020.  Exploring the Benefits of Memory-Limited Fulcrum Recoding for Heterogeneous Nodes. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
Fulcrum decoders can trade off between computational complexity and the number of received packets. This allows heterogeneous nodes to decode at different level of complexity in accordance with their computing power. Variations of Fulcrum codes, like dynamic sparsity and expansion packets (DSEP) have significantly reduced the encoders and decoders' complexity by using dynamic sparsity and expansion packets. However, limited effort had been done for recoders of Fulcrum codes and their variations, limiting their full potential when being deployed at multi-hop networks. In this paper, we investigate the drawback of the conventional Fulcrum recoding and introduce a novel recoding scheme for the family of Fulcrum codes by limiting the buffer size, and thus memory needs. Our evaluations indicate that DSEP recoding mechamism increases the recoding goodput by 50%, and reduces the decoding overhead by 60%-90% while maintaining high decoding goodput at receivers and small memory usage at recoders compared with the conventional Fulcrum recoding. This further reduces the resources needed for Fulcrum codes at the recoders.
2022-03-01
Li, Dong, Jiao, Yiwen, Ge, Pengcheng, Sun, Kuanfei, Gao, Zefu, Mao, Feilong.  2021.  Classification Coding and Image Recognition Based on Pulse Neural Network. 2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID). :260–265.
Based on the third generation neural network spiking neural network, this paper optimizes and improves a classification and coding method, and proposes an image recognition method. Firstly, the read image is converted into a spike sequence, and then the spike sequence is encoded in groups and sent to the neurons in the spike neural network. After learning and training for many times, the quantization standard code is obtained. In this process, the spike sequence transformation matrix and dynamic weight matrix are obtained, and the unclassified data are output through the same matrix for image recognition and classification. Simulation results show that the above methods can get correct coding and preliminary recognition classification, and the spiking neural network can be applied.
Ghanem, Samah A. M..  2021.  Network Coding Schemes for Time Variant/Invariant Channels with Smart Acknowledgment. 2020 International Conference on Communications, Signal Processing, and their Applications (ICCSPA). :1–6.
In this paper, we propose models and schemes for coded and uncoded packet transmission over time invariant (TIC) and time variant (TVC) channels. We provide an approximation of the delay induced assuming fmite number of time slots to transmit a given number of packets. We propose an adaptive physical layer (PHY)-aware coded scheme that designs smart acknowledgments (ACK) via an optimal selection of coded packets to transmit at a given SNR. We apply our proposed schemes to channels with complex fading behavior and high round trip (RTT) delays. We compare the accuracy of TVC coded scheme to the TIC coded scheme, and we show the throughput-delay efficacy of adaptive coded schemes driven by PHY-awareness in the mitigation of high RTT environments, with up to 3 fold gains.
Roy, Debaleena, Guha, Tanaya, Sanchez, Victor.  2021.  Graph Based Transforms based on Graph Neural Networks for Predictive Transform Coding. 2021 Data Compression Conference (DCC). :367–367.
This paper introduces the GBT-NN, a novel class of Graph-based Transform within the context of block-based predictive transform coding using intra-prediction. The GBT-NNis constructed by learning a mapping function to map a graph Laplacian representing the covariance matrix of the current block. Our objective of learning such a mapping functionis to design a GBT that performs as well as the KLT without requiring to explicitly com-pute the covariance matrix for each residual block to be transformed. To avoid signallingany additional information required to compute the inverse GBT-NN, we also introduce acoding framework that uses a template-based prediction to predict residuals at the decoder. Evaluation results on several video frames and medical images, in terms of the percentageof preserved energy and mean square error, show that the GBT-NN can outperform the DST and DCT.
Triphena, Jeba, Thirumavalavan, Vetrivel Chelian, Jayaraman, Thiruvengadam S.  2021.  BER Analysis of RIS Assisted Bidirectional Relay System with Physical Layer Network Coding. 2021 National Conference on Communications (NCC). :1–6.
Reconfigurable Intelligent Surface (RIS) is one of the latest technologies in bringing a certain amount of control to the rather unpredictable and uncontrollable wireless channel. In this paper, RIS is introduced in a bidirectional system with two source nodes and a Decode and Forward (DF) relay node. It is assumed that there is no direct path between the source nodes. The relay node receives information from source nodes simultaneously. The Physical Layer Network Coding (PLNC) is applied at the relay node to assist in the exchange of information between the source nodes. Analytical expressions are derived for the average probability of errors at the source nodes and relay node of the proposed RIS-assisted bidirectional relay system. The Bit Error Rate (BER) performance is analyzed using both simulation and analytical forms. It is observed that RIS-assisted PLNC based bidirectional relay system performs better than the conventional PLNC based bidirectional system.
Liu, Jinghua, Chen, Pingping, Chen, Feng.  2021.  Performance of Deep Learning for Multiple Antennas Physical Layer Network Coding. 2021 15th International Symposium on Medical Information and Communication Technology (ISMICT). :179–183.
In this paper, we propose a deep learning based detection for multiple input multiple output (MIMO) physical-layer network coding (DeepPNC) over two way relay channels (TWRC). In MIMO-PNC, the relay node receives the signals superimposed from the two end nodes. The relay node aims to obtain the network-coded (NC) form of the two end nodes' signals. By training suitable deep neural networks (DNNs) with a limited set of training samples. DeepPNC can extract the NC symbols from the superimposed signals received while the output of each layer in DNNs converges. Compared with the traditional detection algorithms, DeepPNC has higher mapping accuracy and does not require channel information. The simulation results show that the DNNs based DeepPNC can achieve significant gain over the DeepNC scheme and the other traditional schemes, especially when the channel matrix changes unexpectedly.
ElDiwany, Belal Essam, El-Sherif, Amr A., ElBatt, Tamer.  2021.  Network-Coded Wireless Powered Cellular Networks: Lifetime and Throughput Analysis. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
In this paper, we study a wireless powered cellular network (WPCN) supported with network coding capability. In particular, we consider a network consisting of k cellular users (CUs) served by a hybrid access point (HAP) that takes over energy transfer to the users on top of information transmission over both the uplink (UL) and downlink (DL). Each CU has k+1 states representing its communication behavior, and collectively are referred to as the user demand profile. Opportunistically, when the CUs have information to be exchanged through the HAP, it broadcasts this information in coded format to the exchanging pairs, resulting in saving time slots over the DL. These saved slots are then utilized by the HAP to prolong the network lifetime and enhance the network throughput. We quantify, analytically, the performance gain of our network-coded WPCN over the conventional one, that does not employ network coding, in terms of network lifetime and throughput. We consider the two extreme cases of using all the saved slots either for energy boosting or throughput enhancement. In addition, a lifetime/throughput optimization is carried out by the HAP for balancing the saved slots assignment in an optimized fashion, where the problem is formulated as a mixed-integer linear programming optimization problem. Numerical results exhibit the network performance gains from the lifetime and throughput perspectives, for a uniform user demand profile across all CUs. Moreover, the effect of biasing the user demand profile of some CUs in the network reveals considerable improvement in the network performance gains.
Wang, Jie, Jia, Zhiyuan, Yin, Hoover H. F., Yang, Shenghao.  2021.  Small-Sample Inferred Adaptive Recoding for Batched Network Coding. 2021 IEEE International Symposium on Information Theory (ISIT). :1427–1432.
Batched network coding is a low-complexity network coding solution to feedbackless multi-hop wireless packet network transmission with packet loss. The data to be transmitted is encoded into batches where each of which consists of a few coded packets. Unlike the traditional forwarding strategy, the intermediate network nodes have to perform recoding, which generates recoded packets by network coding operations restricted within the same batch. Adaptive recoding is a technique to adapt the fluctuation of packet loss by optimizing the number of recoded packets per batch to enhance the throughput. The input rank distribution, which is a piece of information regarding the batches arriving at the node, is required to apply adaptive recoding. However, this distribution is not known in advance in practice as the incoming link's channel condition may change from time to time. On the other hand, to fully utilize the potential of adaptive recoding, we need to have a good estimation of this distribution. In other words, we need to guess this distribution from a few samples so that we can apply adaptive recoding as soon as possible. In this paper, we propose a distributionally robust optimization for adaptive recoding with a small-sample inferred prediction of the input rank distribution. We develop an algorithm to efficiently solve this optimization with the support of theoretical guarantees that our optimization's performance would constitute as a confidence lower bound of the optimal throughput with high probability.
Chen, Xuejun, Dong, Ping, Zhang, Yuyang, Qiao, Wenxuan, Yin, Chenyang.  2021.  Design of Adaptive Redundant Coding Concurrent Multipath Transmission Scheme in High-speed Mobile Environment. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:2176–2179.
As we all know, network coding can significantly improve the throughput and reliability of wireless networks. However, in the high-speed mobile environment, the packet loss rate of different wireless links may vary greatly due to the time-varying network state, which makes the adjustment of network coding redundancy very important. Because the network coding redundancy is too large, it will lead to excessive overhead and reduce the effective throughput. If the network coding redundancy is too small, it will lead to insufficient decoding, which will also reduce the effective throughput. In the design of multi-path transmission scheduling scheme, we introduce adaptive redundancy network coding scheme. By using multiple links to aggregate network bandwidth, we choose appropriate different coding redundancy for different links to resist the performance loss caused by link packet loss. The simulation results show that when the link packet loss rate is greatly different, the mechanism can not only ensure the transmission reliability, but also greatly reduce the total network redundancy to improve the network throughput very effectively.
Yin, Hoover H. F., Ng, Ka Hei, Zhong, Allen Z., Yeung, Raymond w., Yang, Shenghao.  2021.  Intrablock Interleaving for Batched Network Coding with Blockwise Adaptive Recoding. 2021 IEEE International Symposium on Information Theory (ISIT). :1409–1414.
Batched network coding (BNC) is a low-complexity solution to network transmission in feedbackless multi-hop packet networks with packet loss. BNC encodes the source data into batches of packets. As a network coding scheme, the intermediate nodes perform recoding on the received packets instead of just forwarding them. Blockwise adaptive recoding (BAR) is a recoding strategy which can enhance the throughput and adapt real-time changes in the incoming channel condition. In wireless applications, in order to combat burst packet loss, interleavers can be applied for BNC in a hop-by-hop manner. In particular, a batch-stream interleaver that permutes packets across blocks can be applied with BAR to further boost the throughput. However, the previously proposed minimal communication protocol for BNC only supports permutation of packets within a block, called intrablock interleaving, and so it is not compatible with the batch-stream interleaver. In this paper, we design an intrablock interleaver for BAR that is backward compatible with the aforementioned minimal protocol, so that the throughput can be enhanced without upgrading all the existing devices.
Bartz, Hannes, Puchinger, Sven.  2021.  Decoding of Interleaved Linearized Reed-Solomon Codes with Applications to Network Coding. 2021 IEEE International Symposium on Information Theory (ISIT). :160–165.
Recently, Martínez-Peñas and Kschischang (IEEE Trans. Inf. Theory, 2019) showed that lifted linearized Reed-Solomon codes are suitable codes for error control in multishot network coding. We show how to construct and decode lifted interleaved linearized Reed-Solomon codes. Compared to the construction by Martínez-Peñas-Kschischang, interleaving allows to increase the decoding region significantly (especially w.r.t. the number of insertions) and decreases the overhead due to the lifting (i.e., increases the code rate), at the cost of an increased packet size. The proposed decoder is a list decoder that can also be interpreted as a probabilistic unique decoder. Although our best upper bound on the list size is exponential, we present a heuristic argument and simulation results that indicate that the list size is in fact one for most channel realizations up to the maximal decoding radius.
Yin, Hoover H. F., Xu, Xiaoli, Ng, Ka Hei, Guan, Yong Liang, Yeung, Raymond w..  2021.  Analysis of Innovative Rank of Batched Network Codes for Wireless Relay Networks. 2021 IEEE Information Theory Workshop (ITW). :1–6.
Wireless relay network is a solution for transmitting information from a source node to a sink node far away by installing a relay in between. The broadcasting nature of wireless communication allows the sink node to receive part of the data sent by the source node. In this way, the relay does not need to receive the whole piece of data from the source node and it does not need to forward everything it received. In this paper, we consider the application of batched network coding, a practical form of random linear network coding, for a better utilization of such a network. The amount of innovative information at the relay which is not yet received by the sink node, called the innovative rank, plays a crucial role in various applications including the design of the transmission scheme and the analysis of the throughput. We present a visualization of the innovative rank which allows us to understand and derive formulae related to the innovative rank with ease.
2021-04-08
Vyetrenko, S., Khosla, A., Ho, T..  2009.  On combining information-theoretic and cryptographic approaches to network coding security against the pollution attack. 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers. :788–792.
In this paper we consider the pollution attack in network coded systems where network nodes are computationally limited. We consider the combined use of cryptographic signature based security and information theoretic network error correction and propose a fountain-like network error correction code construction suitable for this purpose.
2021-02-23
Zheng, L., Jiang, J., Pan, W., Liu, H..  2020.  High-Performance and Range-Supported Packet Classification Algorithm for Network Security Systems in SDN. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). :1—6.
Packet classification is a key function in network security systems in SDN, which detect potential threats by matching the packet header bits and a given rule set. It needs to support multi-dimensional fields, large rule sets, and high throughput. Bit Vector-based packet classification methods can support multi-field matching and achieve a very high throughput, However, the range matching is still challenging. To address issue, this paper proposes a Range Supported Bit Vector (RSBV) algorithm for processing the range fields. RSBV uses specially designed codes to store the pre-computed results in memory, and the result of range matching is derived through pipelined Boolean operations. Through a two-dimensional modular architecture, the RSBV can operate at a high clock frequency and line-rate processing can be guaranteed. Experimental results show that for a 1K and 512-bit OpenFlow rule set, the RSBV can sustain a throughput of 520 Million Packets Per Second.
Djordjevic, I. B..  2020.  Surface Codes Based Quantum Networking. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1—5.
We propose a multipartite quantum communication network (QCN) based on surface codes (SCs). We describe how simultaneously to entangle multiple nodes in an arbitrary network topology by employing the SCs. We further describe how to extend the transmission distance between arbitrary two nodes by using the SCs as well. Finally, we describe how to operate the proposed QCN by employing the SDN concept.
Kaur, S., Singh, S..  2020.  Highly Secured all Optical DIM Codes using AND Gate. 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN). :64—68.
Optical Code Division Multiple Access (OCDMA) is an inevitable innovation to cope up with the impediments of regularly expanding information traffic and numerous user accesses in optical systems. In Spectral Amplitude Coding (SAC)-OCDMA systems cross correlation and Multiple Access Interference (MAI) are utmost concerns. For eliminating the cross correlation, reducing the MAI and to enhance the security, in this work, all optical Diagonal Identity Matrices codes (DIM) with Zero Cross-Correlation (ZCC) and optical gating are presented. Chip rate of the proposed work is 0.03 ns and total 60 users are considered with semiconductor optical amplifier based AND operation. Effects of optical gating are analyzed in the presence/absence of eavesdropper in terms of Q factor and received extinction ratio. Proposed system has advantages for service provider because this is mapping free technique and can be easily designed for large number of users.
Wang, L., Guo, D..  2020.  Secure Communication Based on Reliability-Based Hybrid ARQ and LDPC Codes. 2020 Prognostics and Health Management Conference (PHM-Besançon). :304—308.
This paper designs a re-transmission strategy to intensify the security of communication over the additive white Gaussian noise (AWGN) wire-tap channel. In this scheme, irregular low-density parity-check (LDPC) codes work with reliability-based hybrid automatic repeat-request (RB-HARQ). For irregular LDPC codes, the variable nodes have different degrees, which means miscellaneous protection for the nodes. In RB-HARQ protocol, the legitimate receiver calls for re-transmissions including the most unreliable bits at decoder's outputting. The bits' reliability can be evaluated by the average magnitude of a posteriori probability log-likelihood ratios (APP LLRs). Specifically, this scheme utilizes the bit-error rate (BER) to assess the secrecy performance. Besides, the paper gives close analyses of BER through theoretical arguments and simulations. Results of numerical example demonstrate that RB-HARQ protocol with irregular LDPC codes can hugely reinforce the security performance of the communication system.
Xie, L. F., Ho, I. W., Situ, Z., Li, P..  2020.  The Impact of CFO on OFDM based Physical-layer Network Coding with QPSK Modulation. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1—6.
This paper studies Physical-layer Network Coding (PNC) in a two-way relay channel (TWRC) operated based on OFDM and QPSK modulation but with the presence of carrier frequency offset (CFO). CFO, induced by node motion and/or oscillator mismatch, causes inter-carrier interference (ICI) that impairs received signals in PNC. Our ultimate goal is to empower the relay in TWRC to decode network-coded information of the end users at a low bit error rate (BER) under CFO, as it is impossible to eliminate the CFO of both end users. For that, we first put forth two signal detection and channel decoding schemes at the relay in PNC. For signal detection, both schemes exploit the signal structure introduced by ICI, but they aim for different output, thus differing in the subsequent channel decoding. We then consider CFO compensation that adjusts the CFO values of the end nodes simultaneously and find that an optimal choice is to yield opposite CFO values in PNC. Particularly, we reveal that pilot insertion could play an important role against the CFO effect, indicating that we may trade more pilots for not just a better channel estimation but also a lower BER at the relay in PNC. With our proposed measures, we conduct simulation using repeat-accumulate (RA) codes and QPSK modulation to show that PNC can achieve a BER at the relay comparable to that of point-to-point transmissions for low to medium CFO levels.
Xia, H., Gao, N., Peng, J., Mo, J., Wang, J..  2020.  Binarized Attributed Network Embedding via Neural Networks. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.
Traditional attributed network embedding methods are designed to map structural and attribute information of networks jointly into a continuous Euclidean space, while recently a novel branch of them named binarized attributed network embedding has emerged to learn binary codes in Hamming space, aiming to save time and memory costs and to naturally fit node retrieval task. However, current binarized attributed network embedding methods are scarce and mostly ignore the local attribute similarity between each pair of nodes. Besides, none of them attempt to control the independency of each dimension(bit) of the learned binary representation vectors. As existing methods still need improving, we propose an unsupervised Neural-based Binarized Attributed Network Embedding (NBANE) approach. Firstly, we inherit the Weisfeiler-Lehman proximity matrix from predecessors to aggregate high-order features for each node. Secondly, we feed the aggregated features into an autoencoder with the attribute similarity penalizing term and the orthogonality term to make further dimension reduction. To solve the problem of integer optimization we adopt the relaxation-quantization method during the process of training neural networks. Empirically, we evaluate the performance of NBANE through node classification and clustering tasks on three real-world datasets and study a case on fast retrieval in academic networks. Our method achieves better performance over state- of-the-art baselines methods of various types.
Kabatiansky, G., Egorova, E..  2020.  Adversarial multiple access channels and a new model of multimedia fingerprinting coding. 2020 IEEE Conference on Communications and Network Security (CNS). :1—5.

We consider different models of malicious multiple access channels, especially for binary adder channel and for A-channel, and show how they can be used for the reformulation of digital fingerprinting coding problems. In particular, we propose a new model of multimedia fingerprinting coding. In the new model, not only zeroes and plus/minus ones but arbitrary coefficients of linear combinations of noise-like signals for forming watermarks (digital fingerprints) can be used. This modification allows dramatically increase the possible number of users with the property that if t or less malicious users create a forge digital fingerprint then a dealer of the system can find all of them with zero-error probability. We show how arisen problems are related to the compressed sensing problem.

Kamal, A., Dahshan, H., Elbayoumy, A. D..  2020.  A New Homomorphic Message Authentication Code Scheme for Network Coding. 2020 3rd International Conference on Information and Computer Technologies (ICICT). :520—524.
Network coding (NC) can significantly increase network performance and make lossy networks more reliable. Since the middle nodes modify the packets during their path to destination, integrity of the original packets cannot be checked using classical methods (MACs, Signatures, etc). Though, pollution attacks are the most common threat to network coded systems, where an infected node can inject the data flow of a network with a number of false packets and ban the receiver from properly decoding the packets. A lot of work in the security of NC in resisting pollution attacks has been investigated in recent years, majority have the same security parameter 1/q. A Homomorphic MAC scheme is presented earlier to resist pollution attacks with a security level 1/qˆl, In this paper, we will show that the mentioned scheme is subject to known-plaintext attacks. This is due to that part of the key can be revealed in an initial process. Also, the whole key could be revealed if the key is used more than once. Then, a modification to the mentioned scheme is proposed to overcome this issue. Besides, the MAC length is adjustable according to the required security level and not variable according to the vector's length which will accordingly increase the performance and efficiency of the scheme.
Adat, V., Parsamehr, R., Politis, I., Tselios, C., Kotsopoulos, S..  2020.  Malicious user identification scheme for network coding enabled small cell environment. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
Reliable communication over the wireless network with high throughput is a major target for the next generation communication technologies. Network coding can significantly improve the throughput efficiency of the network in a cooperative environment. The small cell technology and device to device communication make network coding an ideal candidate for improved performance in the fifth generation of communication networks. However, the security concerns associated with network coding needs to be addressed before any practical implementations. Pollution attacks are considered one of the most threatening attacks in the network coding environment. Although there are different integrity schemes to detect polluted packets, identifying the exact adversary in a network coding environment is a less addressed challenge. This paper proposes a scheme for identifying and locating adversaries in a dense, network coding enabled environment of mobile nodes. It also discusses a non-repudiation protocol that will prevent adversaries from deceiving the network.
Savva, G., Manousakis, K., Ellinas, G..  2020.  Providing Confidentiality in Optical Networks: Metaheuristic Techniques for the Joint Network Coding-Routing and Spectrum Allocation Problem. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1—4.
In this work, novel metaheuristic algorithms are proposed to address the network coding (NC)-based routing and spectrum allocation (RSA) problem in elastic optical networks, aiming to increase the level of security against eavesdropping attacks for the network's confidential connections. A modified simulated annealing, a genetic algorithm, as well as a combination of the two techniques are examined in terms of confidentiality and spectrum utilization. Performance results demonstrate that using metaheuristic techniques can improve the performance of NC-based RSA algorithms and thus can be utilized in real-world network scenarios.
2020-12-15
Ong, L., Vellambi, B. N..  2020.  Secure Network and Index Coding Equivalence: The Last Piece of the Puzzle. 2020 IEEE International Symposium on Information Theory (ISIT). :1735—1740.

An equivalence was shown between network coding and index coding. The equivalence allows for a network code for any given network-coding instance to be translated to an index code for a suitably constructed index-coding instance, and vice versa. The equivalence also holds for the opposite direction. A secure version of the equivalence in the presence of eavesdroppers was proven for the case where there is no decoding error and no information leakage to the eavesdroppers. For the case of non-zero decoding error and non-zero leakage, three out of the four directions required for an equivalence were proven. This paper proves the last direction, thereby completing the equivalence between secure network coding and secure index coding.