Visible to the public Biblio

Filters: Keyword is metrics testing  [Clear All Filters]
2021-08-02
Pedramnia, Kiyana, Shojaei, Shayan.  2020.  Detection of False Data Injection Attack in Smart Grid Using Decomposed Nearest Neighbor Techniques. 2020 10th Smart Grid Conference (SGC). :1—6.
Smart grid communication system deeply rely on information technologies which makes it vulnerable to variable cyber-attacks. Among possible attacks, False Data Injection (FDI) Attack has created a severe threat to smart grid control system. Attackers can manipulate smart grid measurements such as collected data of phasor measurement units (PMU) by implementing FDI attacks. Detection of FDI attacks with a simple and effective approach, makes the system more reliable and prevents network outages. In this paper we propose a Decomposed Nearest Neighbor algorithm to detect FDI attacks. This algorithm improves traditional k-Nearest Neighbor by using metric learning. Also it learns the local-optima free distance metric by solving a convex optimization problem which makes it more accurate in decision making. We test the proposed method on PMU dataset and compare the results with other beneficial machine learning algorithms for FDI attack detection. Results demonstrate the effectiveness of the proposed approach.
Bouniot, Quentin, Audigier, Romaric, Loesch, Angélique.  2020.  Vulnerability of Person Re-Identification Models to Metric Adversarial Attacks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :3450—3459.
Person re-identification (re-ID) is a key problem in smart supervision of camera networks. Over the past years, models using deep learning have become state of the art. However, it has been shown that deep neural networks are flawed with adversarial examples, i.e. human-imperceptible perturbations. Extensively studied for the task of image closed- set classification, this problem can also appear in the case of open-set retrieval tasks. Indeed, recent work has shown that we can also generate adversarial examples for metric learning systems such as re-ID ones. These models remain vulnerable: when faced with adversarial examples, they fail to correctly recognize a person, which represents a security breach. These attacks are all the more dangerous as they are impossible to detect for a human operator. Attacking a metric consists in altering the distances between the feature of an attacked image and those of reference images, i.e. guides. In this article, we investigate different possible attacks depending on the number and type of guides available. From this metric attack family, two particularly effective attacks stand out. The first one, called Self Metric Attack, is a strong attack that does not need any image apart from the attacked image. The second one, called FurthestNegative Attack, makes full use of a set of images. Attacks are evaluated on commonly used datasets: Market1501 and DukeMTMC. Finally, we propose an efficient extension of adversarial training protocol adapted to metric learning as a defense that increases the robustness of re-ID models.1
Bezzine, Ismail, Khan, Zohaib Amjad, Beghdadi, Azeddine, Al-Maadeed, Noor, Kaaniche, Mounir, Al-Maadeed, Somaya, Bouridane, Ahmed, Cheikh, Faouzi Alaya.  2020.  Video Quality Assessment Dataset for Smart Public Security Systems. 2020 IEEE 23rd International Multitopic Conference (INMIC). :1—5.
Security and monitoring systems are more and more demanding in terms of quality, reliability and flexibility especially those dedicated to video surveillance. The quality of the acquired video signal strongly affects the performance of the high level tasks such as visual tracking, face detection and recognition. The design of a video quality assessment metric dedicated to this particular application requires a preliminary study on the common distortions encountered in video surveillance. To this end, we present in this paper a dataset dedicated to video quality assessment in the context of video surveillance. This database consists of a set of common distortions at different levels of annoyance. The subjective tests are performed using a classical pair comparison protocol with some new configurations. The subjective results obtained through the psycho-visual tests are analyzed and compared to some objective video quality assessment metrics. The preliminary results are encouraging and open a new framework for building smart video surveillance based security systems.
Wagner, Torrey J., Ford, Thomas C..  2020.  Metrics to Meet Security amp; Privacy Requirements with Agile Software Development Methods in a Regulated Environment. 2020 International Conference on Computing, Networking and Communications (ICNC). :17—23.
This work examines metrics that can be used to measure the ability of agile software development methods to meet security and privacy requirements of communications applications. Many implementations of communication protocols, including those in vehicular networks, occur within regulated environments where agile development methods are traditionally discouraged. We propose a framework and metrics to measure adherence to security, quality and software effectiveness regulations if developers desire the cost and schedule benefits of agile methods. After providing an overview of specific challenges that a regulated environment imposes on communications software development, we proceed to examine the 12 agile principles and how they relate to a regulatory environment. From this review we identify two metrics to measure performance of three key regulatory attributes of software for communications applications, and then recommend an approach of either tools, agile methods or DevOps that is best positioned to satisfy its regulated environment attributes. By considering the recommendations in this paper, managers of software-dominant communications programs in a regulated environment can gain insight into leveraging the benefits of agile methods.
Pereira, José D’Abruzzo.  2020.  Techniques and Tools for Advanced Software Vulnerability Detection. 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :123—126.
Software is frequently deployed with vulnerabilities that may allow hackers to gain access to the system or information, leading to money or reputation losses. Although there are many techniques to detect software vulnerabilities, their effectiveness is far from acceptable, especially in large software projects, as shown by several research works. This Ph.D. aims to study the combination of different techniques to improve the effectiveness of vulnerability detection (increasing the detection rate and decreasing the number of false-positives). Static Code Analysis (SCA) has a good detection rate and is the central technique of this work. However, as SCA reports many false-positives, we will study the combination of various SCA tools and the integration with other detection approaches (e.g., software metrics) to improve vulnerability detection capabilities. We will also study the use of such combination to prioritize the reported vulnerabilities and thus guide the development efforts and fixes in resource-constrained projects.
Longueira-Romerc, Ángel, Iglesias, Rosa, Gonzalez, David, Garitano, Iñaki.  2020.  How to Quantify the Security Level of Embedded Systems? A Taxonomy of Security Metrics 2020 IEEE 18th International Conference on Industrial Informatics (INDIN). 1:153—158.
Embedded Systems (ES) development has been historically focused on functionality rather than security, and today it still applies in many sectors and applications. However, there is an increasing number of security threats over ES, and a successful attack could have economical, physical or even human consequences, since many of them are used to control critical applications. A standardized and general accepted security testing framework is needed to provide guidance, common reporting forms and the possibility to compare the results along the time. This can be achieved by introducing security metrics into the evaluation or assessment process. If carefully designed and chosen, metrics could provide a quantitative, repeatable and reproducible value that would reflect the level of security protection of the ES. This paper analyzes the features that a good security metric should exhibit, introduces a taxonomy for classifying them, and finally, it carries out a literature survey on security metrics for the security evaluation of ES. In this review, more than 500 metrics were collected and analyzed. Then, they were reduced to 169 metrics that have the potential to be applied to ES security evaluation. As expected, the 77.5% of them is related exclusively to software, and only the 0.6% of them addresses exclusively hardware security. This work aims to lay the foundations for constructing a security evaluation methodology that uses metrics so as to quantify the security level of an ES.
Gafurov, Davrondzhon, Hurum, Arne Erik.  2020.  Efficiency Metrics and Test Case Design for Test Automation. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :15—23.
In this paper, we present our test automation work applied on national e-health portal for residents in Norway which has over million monthly visits. The focus of the work is threefold: delegating automation tasks and increasing reusability of test artifacts; metrics for estimating efficiency when creating test artifacts and designing robust automated test cases. Delegating (part of) test automation tasks from technical specialist (e.g. programmer - expensive resource) to non-technical specialist (e.g. domain expert, functional tester) is carried out by transforming low level test artifacts into high level test artifacts. Such transformations not only reduce dependency on specialists with coding skills but also enables involving more stakeholders with domain knowledge into test automation. Furthermore, we propose simple metrics which are useful for estimating efficiency during such transformations. Examples of the new metrics are implementation creation efficiency and test creation efficiency. We describe how we design automated test cases in order to reduce the number of false positives and minimize code duplication in the presence of test data challenge (i.e. using same test data both for manual and automated testing). We have been using our test automation solution for over three years. We successfully applied test automation on 2 out of 6 Scrum teams in Helsenorge. In total there are over 120 automated test cases with over 600 iterations (as of today).
2021-04-27
Mladenova, T..  2020.  Software Quality Metrics – Research, Analysis and Recommendation. 2020 International Conference Automatics and Informatics (ICAI). :1—5.

Software Quality Testing has always been a crucial part of the software development process and lately, there has been a rise in the usage of testing applications. While a well-planned and performed test, regardless of its nature - automated or manual, is a key factor when deciding on the results of the test, it is often not enough to give a more deep and thorough view of the whole process. That can be achieved with properly selected software metrics that can be used for proper risk assessment and evaluation of the development.This paper considers the most commonly used metrics when measuring a performed test and examines metrics that can be applied in the development process.

Aigner, A., Khelil, A..  2020.  A Benchmark of Security Metrics in Cyber-Physical Systems. 2020 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops). :1—6.

The usage of connected devices and their role within our daily- and business life gains more and more impact. In addition, various derivations of Cyber-Physical Systems (CPS) reach new business fields, like smart healthcare or Industry 4.0. Although these systems do bring many advantages for users by extending the overall functionality of existing systems, they come with several challenges, especially for system engineers and architects. One key challenge consists in achieving a sufficiently high level of security within the CPS environment, as sensitive data or safety-critical functions are often integral parts of CPS. Being system of systems (SoS), CPS complexity, unpredictability and heterogeneity complicate analyzing the overall level of security, as well as providing a way to detect ongoing attacks. Usually, security metrics and frameworks provide an effective tool to measure the level of security of a given component or system. Although several comprehensive surveys exist, an assessment of the effectiveness of the existing solutions for CPS environments is insufficiently investigated in literature. In this work, we address this gap by benchmarking a carefully selected variety of existing security metrics in terms of their usability for CPS. Accordingly, we pinpoint critical CPS challenges and qualitatively assess the effectiveness of the existing metrics for CPS systems.

2021-03-29
Aigner, A., Khelil, A..  2020.  An Effective Semantic Security Metric for Industrial Cyber-Physical Systems. 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS). 1:87—92.

The emergence of Industrial Cyber-Physical Systems (ICPS) in today's business world is still steadily progressing to new dimensions. Although they bring many new advantages to business processes and enable automation and a wider range of service capability, they also propose a variety of new challenges. One major challenge, which is introduced by such System-of-Systems (SoS), lies in the security aspect. As security may not have had that significant role in traditional embedded system engineering, a generic way to measure the level of security within an ICPS would provide a significant benefit for system engineers and involved stakeholders. Even though many security metrics and frameworks exist, most of them insufficiently consider an SoS context and the challenges of such environments. Therefore, we aim to define a security metric for ICPS, which measures the level of security during the system design, tests, and integration as well as at runtime. For this, we try to focus on a semantic point of view, which on one hand has not been considered in security metric definitions yet, and on the other hand allows us to handle the complexity of SoS architectures. Furthermore, our approach allows combining the critical characteristics of an ICPS, like uncertainty, required reliability, multi-criticality and safety aspects.

2020-11-04
Rahman, S., Aburub, H., Mekonnen, Y., Sarwat, A. I..  2018.  A Study of EV BMS Cyber Security Based on Neural Network SOC Prediction. 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T D). :1—5.

Recent changes to greenhouse gas emission policies are catalyzing the electric vehicle (EV) market making it readily accessible to consumers. While there are challenges that arise with dense deployment of EVs, one of the major future concerns is cyber security threat. In this paper, cyber security threats in the form of tampering with EV battery's State of Charge (SOC) was explored. A Back Propagation (BP) Neural Network (NN) was trained and tested based on experimental data to estimate SOC of battery under normal operation and cyber-attack scenarios. NeuralWare software was used to run scenarios. Different statistic metrics of the predicted values were compared against the actual values of the specific battery tested to measure the stability and accuracy of the proposed BP network under different operating conditions. The results showed that BP NN was able to capture and detect the false entries due to a cyber-attack on its network.

Sultana, K. Z., Williams, B. J., Bosu, A..  2018.  A Comparison of Nano-Patterns vs. Software Metrics in Vulnerability Prediction. 2018 25th Asia-Pacific Software Engineering Conference (APSEC). :355—364.

Context: Software security is an imperative aspect of software quality. Early detection of vulnerable code during development can better ensure the security of the codebase and minimize testing efforts. Although traditional software metrics are used for early detection of vulnerabilities, they do not clearly address the granularity level of the issue to precisely pinpoint vulnerabilities. The goal of this study is to employ method-level traceable patterns (nano-patterns) in vulnerability prediction and empirically compare their performance with traditional software metrics. The concept of nano-patterns is similar to design patterns, but these constructs can be automatically recognized and extracted from source code. If nano-patterns can better predict vulnerable methods compared to software metrics, they can be used in developing vulnerability prediction models with better accuracy. Aims: This study explores the performance of method-level patterns in vulnerability prediction. We also compare them with method-level software metrics. Method: We studied vulnerabilities reported for two major releases of Apache Tomcat (6 and 7), Apache CXF, and two stand-alone Java web applications. We used three machine learning techniques to predict vulnerabilities using nano-patterns as features. We applied the same techniques using method-level software metrics as features and compared their performance with nano-patterns. Results: We found that nano-patterns show lower false negative rates for classifying vulnerable methods (for Tomcat 6, 21% vs 34.7%) and therefore, have higher recall in predicting vulnerable code than the software metrics used. On the other hand, software metrics show higher precision than nano-patterns (79.4% vs 76.6%). Conclusion: In summary, we suggest developers use nano-patterns as features for vulnerability prediction to augment existing approaches as these code constructs outperform standard metrics in terms of prediction recall.

Torkura, K. A., Sukmana, M. I. H., Strauss, T., Graupner, H., Cheng, F., Meinel, C..  2018.  CSBAuditor: Proactive Security Risk Analysis for Cloud Storage Broker Systems. 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA). :1—10.

Cloud Storage Brokers (CSB) provide seamless and concurrent access to multiple Cloud Storage Services (CSS) while abstracting cloud complexities from end-users. However, this multi-cloud strategy faces several security challenges including enlarged attack surfaces, malicious insider threats, security complexities due to integration of disparate components and API interoperability issues. Novel security approaches are imperative to tackle these security issues. Therefore, this paper proposes CS-BAuditor, a novel cloud security system that continuously audits CSB resources, to detect malicious activities and unauthorized changes e.g. bucket policy misconfigurations, and remediates these anomalies. The cloud state is maintained via a continuous snapshotting mechanism thereby ensuring fault tolerance. We adopt the principles of chaos engineering by integrating BrokerMonkey, a component that continuously injects failure into our reference CSB system, CloudRAID. Hence, CSBAuditor is continuously tested for efficiency i.e. its ability to detect the changes injected by BrokerMonkey. CSBAuditor employs security metrics for risk analysis by computing severity scores for detected vulnerabilities using the Common Configuration Scoring System, thereby overcoming the limitation of insufficient security metrics in existing cloud auditing schemes. CSBAuditor has been tested using various strategies including chaos engineering failure injection strategies. Our experimental evaluation validates the efficiency of our approach against the aforementioned security issues with a detection and recovery rate of over 96 %.

Al-Far, A., Qusef, A., Almajali, S..  2018.  Measuring Impact Score on Confidentiality, Integrity, and Availability Using Code Metrics. 2018 International Arab Conference on Information Technology (ACIT). :1—9.

Confidentiality, Integrity, and Availability are principal keys to build any secure software. Considering the security principles during the different software development phases would reduce software vulnerabilities. This paper measures the impact of the different software quality metrics on Confidentiality, Integrity, or Availability for any given object-oriented PHP application, which has a list of reported vulnerabilities. The National Vulnerability Database was used to provide the impact score on confidentiality, integrity, and availability for the reported vulnerabilities on the selected applications. This paper includes a study for these scores and its correlation with 25 code metrics for the given vulnerable source code. The achieved results were able to correlate 23.7% of the variability in `Integrity' to four metrics: Vocabulary Used in Code, Card and Agresti, Intelligent Content, and Efferent Coupling metrics. The Length (Halstead metric) could alone predict about 24.2 % of the observed variability in ` Availability'. The results indicate no significant correlation of `Confidentiality' with the tested code metrics.

Huang, B., Zhang, P..  2018.  Software Runtime Accumulative Testing. 2018 12th International Conference on Reliability, Maintainability, and Safety (ICRMS). :218—222.

The "aging" phenomenon occurs after the long-term running of software, with the fault rate rising and running efficiency dropping. As there is no corresponding testing type for this phenomenon among conventional software tests, "software runtime accumulative testing" is proposed. Through analyzing several examples of software aging causing serious accidents, software is placed in the system environment required for running and the occurrence mechanism of software aging is analyzed. In addition, corresponding testing contents and recommended testing methods are designed with regard to all factors causing software aging, and the testing process and key points of testing requirement analysis for carrying out runtime accumulative testing are summarized, thereby providing a method and guidance for carrying out "software runtime accumulative testing" in software engineering.

Zong, P., Wang, Y., Xie, F..  2018.  Embedded Software Fault Prediction Based on Back Propagation Neural Network. 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :553—558.

Predicting software faults before software testing activities can help rational distribution of time and resources. Software metrics are used for software fault prediction due to their close relationship with software faults. Thanks to the non-linear fitting ability, Neural networks are increasingly used in the prediction model. We first filter metric set of the embedded software by statistical methods to reduce the dimensions of model input. Then we build a back propagation neural network with simple structure but good performance and apply it to two practical embedded software projects. The verification results show that the model has good ability to predict software faults.

Howard, J. J., Blanchard, A. J., Sirotin, Y. B., Hasselgren, J. A., Vemury, A. R..  2018.  An Investigation of High-Throughput Biometric Systems: Results of the 2018 Department of Homeland Security Biometric Technology Rally. 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS). :1—7.

The 2018 Biometric Technology Rally was an evaluation, sponsored by the U.S. Department of Homeland Security, Science and Technology Directorate (DHS S&T), that challenged industry to provide face or face/iris systems capable of unmanned, traveler identification in a high-throughput security environment. Selected systems were installed at the Maryland Test Facility (MdTF), a DHS S&T affiliated bio-metrics testing laboratory, and evaluated using a population of 363 naive human subjects recruited from the general public. The performance of each system was examined based on measured throughput, capture capability, matching capability, and user satisfaction metrics. This research documents the performance of unmanned face and face/iris systems required to maintain an average total subject interaction time of less than 10 seconds. The results highlight discrepancies between the performance of biometric systems as anticipated by the system designers and the measured performance, indicating an incomplete understanding of the main determinants of system performance. Our research shows that failure-to-acquire errors, unpredicted by system designers, were the main driver of non-identification rates instead of failure-to-match errors, which were better predicted. This outcome indicates the need for a renewed focus on reducing the failure-to-acquire rate in high-throughput, unmanned biometric systems.

Chamarthi, R., Reddy, A. P..  2018.  Empirical Methodology of Testing Using FMEA and Quality Metrics. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA). :85—90.

Testing which is an indispensable part of software engineering is itself an art and science which emerged as a discipline over a period. On testing, if defects are found, testers diminish the risk by providing the awareness of defects and solutions to deal with them before release. If testing does not find any defects, testing assure that under certain conditions the system functions correctly. To guarantee that enough testing has been done, major risk areas need to be tested. We have to identify the risks, analyse and control them. We need to categorize the risk items to decide the extent of testing to be covered. Also, Implementation of structured metrics is lagging in software testing. Efficient metrics are necessary to evaluate, manage the testing process and make testing a part of engineering discipline. This paper proposes the usage of risk based testing using FMEA technique and provides an ideal set of metrics which provides a way to ensure effective testing process.

2020-11-02
Huang, S., Chen, Q., Chen, Z., Chen, L., Liu, J., Yang, S..  2019.  A Test Cases Generation Technique Based on an Adversarial Samples Generation Algorithm for Image Classification Deep Neural Networks. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :520–521.

With widely applied in various fields, deep learning (DL) is becoming the key driving force in industry. Although it has achieved great success in artificial intelligence tasks, similar to traditional software, it has defects that, once it failed, unpredictable accidents and losses would be caused. In this paper, we propose a test cases generation technique based on an adversarial samples generation algorithm for image classification deep neural networks (DNNs), which can generate a large number of good test cases for the testing of DNNs, especially in case that test cases are insufficient. We briefly introduce our method, and implement the framework. We conduct experiments on some classic DNN models and datasets. We further evaluate the test set by using a coverage metric based on states of the DNN.

Ping, C., Jun-Zhe, Z..  2019.  Research on Intelligent Evaluation Method of Transient Analysis Software Function Test. 2019 International Conference on Advances in Construction Machinery and Vehicle Engineering (ICACMVE). :58–61.

In transient distributed cloud computing environment, software is vulnerable to attack, which leads to software functional completeness, so it is necessary to carry out functional testing. In order to solve the problem of high overhead and high complexity of unsupervised test methods, an intelligent evaluation method for transient analysis software function testing based on active depth learning algorithm is proposed. Firstly, the active deep learning mathematical model of transient analysis software function test is constructed by using association rule mining method, and the correlation dimension characteristics of software function failure are analyzed. Then the reliability of the software is measured by the spectral density distribution method of software functional completeness. The intelligent evaluation model of transient analysis software function testing is established in the transient distributed cloud computing environment, and the function testing and reliability intelligent evaluation are realized. Finally, the performance of the transient analysis software is verified by the simulation experiment. The results show that the accuracy of the software functional integrity positioning is high and the intelligent evaluation of the transient analysis software function testing has a good self-adaptability by using this method to carry out the function test of the transient analysis software. It ensures the safe and reliable operation of the software.

Zhang, Z., Xie, X..  2019.  On the Investigation of Essential Diversities for Deep Learning Testing Criteria. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS). :394–405.

Recent years, more and more testing criteria for deep learning systems has been proposed to ensure system robustness and reliability. These criteria were defined based on different perspectives of diversity. However, there lacks comprehensive investigation on what are the most essential diversities that should be considered by a testing criteria for deep learning systems. Therefore, in this paper, we conduct an empirical study to investigate the relation between test diversities and erroneous behaviors of deep learning models. We define five metrics to reflect diversities in neuron activities, and leverage metamorphic testing to detect erroneous behaviors. We investigate the correlation between metrics and erroneous behaviors. We also go further step to measure the quality of test suites under the guidance of defined metrics. Our results provided comprehensive insights on the essential diversities for testing criteria to exhibit good fault detection ability.

Aman, W., Khan, F..  2019.  Ontology-based Dynamic and Context-aware Security Assessment Automation for Critical Applications. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). :644–647.

Several assessment techniques and methodologies exist to analyze the security of an application dynamically. However, they either are focused on a particular product or are mainly concerned about the assessment process rather than the product's security confidence. Most crucially, they tend to assess the security of a target application as a standalone artifact without assessing its host infrastructure. Such attempts can undervalue the overall security posture since the infrastructure becomes crucial when it hosts a critical application. We present an ontology-based security model that aims to provide the necessary knowledge, including network settings, application configurations, testing techniques and tools, and security metrics to evaluate the security aptitude of a critical application in the context of its hosting infrastructure. The objective is to integrate the current good practices and standards in security testing and virtualization to furnish an on-demand and test-ready virtual target infrastructure to execute the critical application and to initiate a context-aware and quantifiable security assessment process in an automated manner. Furthermore, we present a security assessment architecture to reflect on how the ontology can be integrated into a standard process.

Chong, T., Anu, V., Sultana, K. Z..  2019.  Using Software Metrics for Predicting Vulnerable Code-Components: A Study on Java and Python Open Source Projects. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :98–103.

Software vulnerabilities often remain hidden until an attacker exploits the weak/insecure code. Therefore, testing the software from a vulnerability discovery perspective becomes challenging for developers if they do not inspect their code thoroughly (which is time-consuming). We propose that vulnerability prediction using certain software metrics can support the testing process by identifying vulnerable code-components (e.g., functions, classes, etc.). Once a code-component is predicted as vulnerable, the developers can focus their testing efforts on it, thereby avoiding the time/effort required for testing the entire application. The current paper presents a study that compares how software metrics perform as vulnerability predictors for software projects developed in two different languages (Java vs Python). The goal of this research is to analyze the vulnerability prediction performance of software metrics for different programming languages. We designed and conducted experiments on security vulnerabilities reported for three Java projects (Apache Tomcat 6, Tomcat 7, Apache CXF) and two Python projects (Django and Keystone). In this paper, we focus on a specific type of code component: Functions. We apply Machine Learning models for predicting vulnerable functions. Overall results show that software metrics-based vulnerability prediction is more useful for Java projects than Python projects (i.e., software metrics when used as features were able to predict Java vulnerable functions with a higher recall and precision compared to Python vulnerable functions prediction).

Hamad, R. M. H., Fayoumi, M. Al.  2019.  Scalable Quality and Testing Lab (SQTL): Mission-Critical Applications Testing. 2019 International Conference on Computer and Information Sciences (ICCIS). :1–7.

Currently, the complexity of software quality and testing is increasing exponentially with a huge number of challenges knocking doors, especially when testing a mission-critical application in banking and other critical domains, or the new technology trends with decentralized and nonintegrated testing tools. From practical experience, software testing has become costly and more effort-intensive with unlimited scope. This thesis promotes the Scalable Quality and Testing Lab (SQTL), it's a centralized quality and testing platform, which integrates a powerful manual, automation and business intelligence tools. SQTL helps quality engineers (QE) effectively organize, manage and control all testing activities in one centralized lab, starting from creating test cases, then executing different testing types such as web, security and others. And finally, ending with analyzing and displaying all testing activities result in an interactive dashboard, which allows QE to forecast new bugs especially those related to security. The centralized SQTL is to empower QE during the testing cycle, help them to achieve a greater level of software quality in minimum time, effort and cost, and decrease defect density metric.

2020-08-28
Hasanin, Tawfiq, Khoshgoftaar, Taghi M., Leevy, Joffrey L..  2019.  A Comparison of Performance Metrics with Severely Imbalanced Network Security Big Data. 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). :83—88.

Severe class imbalance between the majority and minority classes in large datasets can prejudice Machine Learning classifiers toward the majority class. Our work uniquely consolidates two case studies, each utilizing three learners implemented within an Apache Spark framework, six sampling methods, and five sampling distribution ratios to analyze the effect of severe class imbalance on big data analytics. We use three performance metrics to evaluate this study: Area Under the Receiver Operating Characteristic Curve, Area Under the Precision-Recall Curve, and Geometric Mean. In the first case study, models were trained on one dataset (POST) and tested on another (SlowlorisBig). In the second case study, the training and testing dataset roles were switched. Our comparison of performance metrics shows that Area Under the Precision-Recall Curve and Geometric Mean are sensitive to changes in the sampling distribution ratio, whereas Area Under the Receiver Operating Characteristic Curve is relatively unaffected. In addition, we demonstrate that when comparing sampling methods, borderline-SMOTE2 outperforms the other methods in the first case study, and Random Undersampling is the top performer in the second case study.