Visible to the public Biblio

Filters: Keyword is efficient encryption  [Clear All Filters]
2023-07-13
Kaliyaperumal, Karthikeyan, Sammy, F..  2022.  An Efficient Key Generation Scheme for Secure Sharing of Patients Health Records using Attribute Based Encryption. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1–6.
Attribute Based Encryption that solely decrypts the cipher text's secret key attribute. Patient information is maintained on trusted third party servers in medical applications. Before sending health records to other third party servers, it is essential to protect them. Even if data are encrypted, there is always a danger of privacy violation. Scalability problems, access flexibility, and account revocation are the main security challenges. In this study, individual patient health records are encrypted utilizing a multi-authority ABE method that permits a multiple number of authorities to govern the attributes. A strong key generation approach in the classic Attribute Based Encryption is proposed in this work, which assures the robust protection of health records while also demonstrating its effectiveness. Simulation is done by using CloudSim Simulator and Statistical reports were generated using Cloud Reports. Efficiency, computation time and security of our proposed scheme are evaluated. The simulation results reveal that the proposed key generation technique is more secure and scalable.
Guo, Chunxu, Wang, Yi, Chen, Fupeng, Ha, Yajun.  2022.  Unified Lightweight Authenticated Encryption for Resource-Constrained Electronic Control Unit. 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). :1–4.
Electronic control units (ECU) have been widely used in modern resource-constrained automotive systems, com-municating through the controller area network (CAN) bus. However, they are still facing man-in-the-middle attacks in CAN bus due to the absence of a more effective authenti-cation/encryption mechanism. In this paper, to defend against the attacks more effectively, we propose a unified lightweight authenticated encryption that integrates recent prevalent cryp-tography standardization Isap and Ascon.First, we reuse the common permutation block of ISAP and Asconto support authenticated encryption and encryption/decryption. Second, we provide a flexible and independent switch between authenticated encryption and encryption/decryption to support specific application requirements. Third, we adopt standard CAESAR hardware API as the interface standard to support compatibility between different interfaces or platforms. Experimental results show that our proposed unified lightweight authenticated encryption can reduce 26.09% area consumption on Xilinx Artix-7 FPGA board compared with the state-of-the-arts. In addition, the encryption overhead of the proposed design for transferring one CAN data frame is \textbackslashmathbf10.75 \textbackslashmu s using Asconand \textbackslashmathbf72.25 \textbackslashmu s using ISAP at the frequency of 4 MHz on embedded devices.
Chen, Chen, Wang, Xingjun, Huang, Guanze, Liu, Guining.  2022.  An Efficient Randomly-Selective Video Encryption Algorithm. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1287–1293.
A randomly-selective encryption (RSE) algorithm is proposed for HEVC video bitstream in this paper. It is a pioneer algorithm with high efficiency and security. The encryption process is completely independent of video compression process. A randomly-selective sequence (RSS) based on the RC4 algorithm is designed to determine the extraction position in the video bitstream. The extracted bytes are encrypted by AES-CTR to obtain the encrypted video. Based on the high efficiency video coding (HEV C) bitstream, the simulation and analysis results show that the proposed RSE algorithm has low time complexity and high security, which is a promising tool for video cryptographic applications.
Jeyakumar, D, Chidambarathanu, K., Pradeepkumar, S., Anish, T.P..  2022.  OUTFS+. An Efficient User-Side Encrypted File System Using IBE With Parallel Encryption. 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI). :760–766.
Cloud computing is a fast growing field that provides the user with resources like software, infrastructure and virtual hardware processing power. The steady rise of cloud computing in recent times allowed large companies and even individual users to move towards working with cloud storage systems. However, the risks of leakage of uploaded data in the cloud storage and the questions about the privacy of such systems are becoming a huge problem. Security incidents occur frequently everywhere around the world. Sometimes, data leak may occur at the server side by hackers for their own profit. Data being shared must be encrypted before outsourcing it to the cloud storage. Existing encryption/decryption systems utilize large computational power and have troubles managing the files. This paper introduces a file system that is a more efficient, virtual, with encryption/decryption scheme using parallel encryption. To make encryption and decryption of files easier, Parallel encryption is used in place of serial encryption which is integrated with Identity-Based Encryption in the file system. The proposed file system aims to secure files, reduce the chances of file stored in cloud storage getting leaked thus providing better security. The proposed file system, OutFS+, is more robust and secure than its predecessor, OutFS. Cloud outsourcing takes place faster and the files can be downloaded to the OutFS+ instance on the other side. Moreover, OutFS+ is secure since it is a virtual layer on the operating system and can be unmounted whenever the user wants to.
Kori, Prachi, Cecil, Kanchan.  2022.  Secure Wireless Sensor Network Design Using a New Method of High-Speed Lightweight Encryption. 2022 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA. :1–8.
Data streaming over a wireless network such as Wireless Sensor Networks, where wireless terminals (like PDAs, mobile phones, palmtops) access in data conferencing system, new challenges will be brought about. goal for this paper is to propose a high-speed lightweight encryption (HSLE) for low computational capability controller of WSN, HSLE scheme which reduces latency overhead by modifying existing approaches in order to encrypting data using a probabilistic encryption of data blocks. Proposed work is also useful when we communicate our confidential data on WSN or IoT it should be secure, we just have to save an encrypted data on cloud servers. proposed work is a new key-based algorithm and uses HSLE encryption instead for high end AES. Proposed methods cause significant speed enhancement for data encryption with similar security, in addition, it is best suited in order to communication between hand-held devices such as mobile phones, palmtops etc. algorithm may be used between sites where processing capacity and battery power are limited and efficient encryption is main necessity. This work is implemented on MATLAB and a wireless sensor network of maximum 100 nodes developed for testing the proposed network node encryption system, the time delay observed for the communication in 100 nodes WSN is less in compare with the other available works.
ISSN: 2771-1358
Kumar, Aytha Ramesh, Sharmila, Yadavalli.  2022.  FPGA Implementation of High Performance Hybrid Encryption Standard. 2022 International Conference on Recent Trends in Microelectronics, Automation, Computing and Communications Systems (ICMACC). :103–107.
Now a day's data hacking is the main issue for cloud computing, protecting a data there are so many methods in that one most usable method is the data Encryption. Process of Encryption is the converting a data into an un readable form using encryption key, encoded version that can only be read with authorized access to the decryption key. This paper presenting a simple, energy and area efficient method for endurance issue in secure resistive main memories. In this method, by employing the random characteristics of the encrypted data encoded by the Advanced Encryption Standard (AES) as well as a rotational shift operation. Random Shifter is simple hardware implementation and energy efficient method. It is considerably smaller than that of other recently proposed methods. Random Shifter technique used for secure memory with other error correction methods. Due to their reprogram ability, Field Programmable Gate Arrays (FPGA) are a popular choice for the hardware implementation of cryptographic algorithms. The proposed random shifter algorithm for AES and DES (Hybrid) data is implemented in the VIRTEX FPGA and it is efficient and suitable for hardware-critical applications. This Paper is implemented using model sim and Xilinx 14.5 version.
Senthilnayaki, B., Venkatalakshami, K., Dharanyadevi, P., G, Nivetha, Devi, A..  2022.  An Efficient Medical Image Encryption Using Magic Square and PSO. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1–5.
Encryption is essential for protecting sensitive data, especially images, against unauthorized access and exploitation. The goal of this work is to develop a more secure image encryption technique for image-based communication. The approach uses particle swarm optimization, chaotic map and magic square to offer an ideal encryption effect. This work introduces a novel encryption algorithm based on magic square. The image is first broken down into single-byte blocks, which are then replaced with the value of the magic square. The encrypted images are then utilized as particles and a starting assembly for the PSO optimization process. The correlation coefficient applied to neighboring pixels is used to define the ideal encrypted image as a fitness function. The results of the experiments reveal that the proposed approach can effectively encrypt images with various secret keys and has a decent encryption effect. As a result of the proposed work improves the public key method's security while simultaneously increasing memory economy.
Mammenp, Asha, KN, Sreehari, Bhakthavatchalu, Ramesh.  2022.  Implementation of Efficient Hybrid Encryption Technique. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1–4.
Security troubles of restricted sources communications are vital. Existing safety answers aren't sufficient for restricted sources gadgets in phrases of Power Area and Ef-ficiency‘. Elliptic curves cryptosystem (ECC) is area efficent for restricted sources gadgets extra than different uneven cryp-to systems because it gives a better safety degree with equal key sizes compared to different present techniques. In this paper, we studied a lightweight hybrid encryption technique that makes use of set of rules primarily based totally on AES for the Plain text encription and Elliptic Curve Diffie-Hellman (ECDH) protocol for Key encryption. The simplicity of AES implementation makes it light weight and the complexity of ECDH make it secure. The design is simulated using Spyder Tool, Modelsim and Implemented using Xilinx Vivado the effects display that the proposed lightweight Model offers a customary security degree with decreased computing capacity. we proposed a key authentication system for enhanced security along with an Idea to implement the project with multimedia input on FPGA
Salman, Zainab, Alomary, Alauddin.  2022.  An Efficient Approach to Reduce the Encryption and Decryption Time Based on the Concept of Unique Values. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :535–540.
Data security has become the most important issue in every institution or company. With the existence of hackers, intruders, and third parties on the cloud, securing data has become more challenging. This paper uses a hybrid encryption method that is based on the Elliptic Curve Cryptography (ECC) and Fully Homomorphic Encryption (FHE). ECC is used as a lightweight encryption algorithm that can provide a good level of security. Besides, FHE is used to enable data computation on the encrypted data in the cloud. In this paper, the concept of unique values is combined with the hybrid encryption method. Using the concept of unique values contributes to decreasing the encryption and decryption time obviously. To evaluate the performance of the combined encryption method, the provided results are compared with the ones in the encryption method without using the concept of unique values. Experiments show that the combined encryption method can reduce the encryption time up to 43% and the decryption time up to 56%.
ISSN: 2770-7466
2022-05-05
Zhang, Qiao-Jia, Ye, Qing, Li, Liang, Liu, Si-jie, Chen, Kai-qiang.  2021.  An efficient selective encryption scheme for HEVC based on hyperchaotic Lorenz system. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:683—690.
With the wide application of video information, the protection of video information from illegal access has been widely investigated recently. An efficient selective encryption scheme for high efficiency video coding (HEVC) based on hyperchaotic Lorenz system is proposed. Firstly, the hyperchaotic Lorenz system is discretized and the generated chaotic state values are converted into chaotic pseudorandom sequences for encryption. The important syntax elements in HEVC are then selectively encrypted with the generated stream cipher. The experimental results show that the encrypted video is highly disturbed and the video information cannot be recognized. Through the analysis of objective index results, it is shown that the scheme is both efficient and security.
Raheja, Nisha, Manocha, Amit Kumar.  2021.  An Efficient Encryption-Authentication Scheme for Electrocardiogram Data using the 3DES and Water Cycle Optimization Algorithm. 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC). :10—14.

To share the recorded ECG data with the cardiologist in Golden Hours in an efficient and secured manner via tele-cardiology may save the lives of the population residing in rural areas of a country. This paper proposes an encryption-authentication scheme for secure the ECG data. The main contribution of this work is to generate a one-time padding key and deploying an encryption algorithm in authentication mode to achieve encryption and authentication. This is achieved by a water cycle optimization algorithm that generates a completely random one-time padding key and Triple Data Encryption Standard (3DES) algorithm for encrypting the ECG data. To validate the accuracy of the proposed encryption authentication scheme, experimental results were performed on standard ECG data and various performance parameters were calculated for it. The results show that the proposed algorithm improves security and passes the statistical key generation test.

Reyad, Omar, Mansour, Hanaa M., Heshmat, Mohamed, Zanaty, Elnomery A..  2021.  Key-Based Enhancement of Data Encryption Standard For Text Security. 2021 National Computing Colleges Conference (NCCC). :1—6.
Securing various data types such as text, image, and video is needed in real-time communications. The transmission of data over an insecure channel is a permanent challenge, especially in mass Internet applications. Preserving confidentiality and integrity of data toward malicious attacks, accidental devastation, change during transfer, or while in storage must be improved. Data Encryption Standard (DES) is considered as a symmetric-key algorithm that is most widely used for various security purposes. In this work, a Key-based Enhancement of the DES (KE-DES) technique for securing text is proposed. The KEDES is implemented by the application of two steps: the first is merging the Odd/Even bit transformation of every key bit in the DES algorithm. The second step is replacing the right-side expansion of the original DES by using Key-Distribution (K-D) function. The K-D allocation consists of 8-bits from Permutation Choice-1 (PC-1) key outcome. The next 32-bits outcomes from the right-side of data, there is also 8-bits outcome from Permutation Choice-2 (PC-2) in each round. The key and data created randomly, in this case, provide adequate security and the KEDES model is considered more efficient for text encryption.
Zhang, Hongao, Yang, Zhen, Yu, Haiyang.  2021.  Lightweight and Privacy-preserving Search over Encryption Blockchain. 2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC). :423—427.
With the development of cloud computing, a growing number of users use the cloud to store their sensitive data. To protect privacy, users often encrypt their data before outsourcing. Searchable Symmetric Encryption (SSE) enables users to retrieve their encrypted data. Most prior SSE schemes did not focus on malicious servers, and users could not confirm the correctness of the search results. Blockchain-based SSE schemes show the potential to solve this problem. However, the expensive nature of storage overhead on the blockchain presents an obstacle to the implementation of these schemes. In this paper, we propose a lightweight blockchain-based searchable symmetric encryption scheme that reduces the space cost in the scheme by improving the data structure of the encrypted index and ensuring efficient data retrieval. Experiment results demonstrate the practicability of our scheme.
Pei, Qi, Shin, Seunghee.  2021.  Efficient Split Counter Mode Encryption for NVM. 2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). :93—95.
Emerging non-volatile memory technology enables non-volatile main memory (NVMM) that can provide larger capacity and better energy-saving opportunities than DRAMs. However, its non-volatility raises security concerns, where the data in NVMMs can be taken if the memory is stolen. Memory encryption protects the data by limiting it always stays encrypted outside the processor boundary. However, the decryption latency before the data being used by the processor brings new performance burdens. Unlike DRAM-based main memory, such performance overhead worsens on the NVMM due to the slow latency. In this paper, we will introduce optimizations that can be used to re-design the encryption scheme. In our tests, our two new designs, 3-level split counter mode encryption and 8-block split counter mode encryption, improved performance by 26% and 30% at maximum and by 8% and 9% on average from the original encryption scheme, split counter encryption.
Vishwakarma, Seema, Gupta, Neetesh Kumar.  2021.  An Efficient Color Image Security Technique for IOT using Fast RSA Encryption Technique. 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT). :717—722.
Implementing the color images encryption is a challenging field of the research for IOT applications. An exponential growth in imaging cameras in IOT uses makes it critical to design the robust image security algorithms. It is also observed that performance of existing encryption methods degrades under the presence of noisy environments. This is the major concern of evaluating the encryption method in this paper. The prime concern of this paper is to design the fast efficient color images encryption algorithm by designing an efficient and robustness RSA encryption algorithm. Method takes the advantage of both preprocessing and the Gaussian pyramid (GP) approach for encryption. To improve the performance it is proposed to use the LAB color space and implement the RSA encryption on luminance (L) component using the GP domain. The median filter and image sharpening is used for preprocessing. The goal is to improve the performance under highly noisy imaging environment. The performance is compared based on the crypto weights and on the basis of visual artifacts and entropy analysis. The decrypted outputs are again converted to color image output. Using the LAB color space is expected to improve the entropy performance of the image. Result of proposed encryption method is evaluated under the different types of the noisy attacks over the color images and also performance is compared with state of art encryption methods. Significant improvement speed of the algorithm is compared in terms of the elapsed time
Bouteghrine, Belqassim, Tanougast, Camel, Sadoudi, Said.  2021.  Fast and Efficient Chaos-Based Algorithm for Multimedia Data Encryption. 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). :1—5.
With the evolution of the communication technology, fast and efficient tools for secure exchanged data are highly required. Through this research work, we introduce a simplified and fast chaos-based scheme for multimedia data encryption and in particular for color image encryption application. The new algorithm is based on an extracted four-dimension (4-D) discrete time map. The proposed 4-D chaos system includes seven (07) nonlinear terms and four (04) controllers to generate a robust chaos that can satisfy the encryption requirements. The performance of this image encryption algorithm are analyzed with the help of four important factors which are key space, correlation, complexity and running time. Results of the security analysis compared to some of similar proposals, show that our encryption scheme is more effective in terms of key stream cipher space, correlation, complexity and running time.
Tseng, Yi-Fan, Gao, Shih-Jie.  2021.  Efficient Subset Predicate Encryption for Internet of Things. 2021 IEEE Conference on Dependable and Secure Computing (DSC). :1—2.
With the rapid development of Internet technologies, emerging network environments have been discussed, such as Internet of Things. In this manuscript, we proposed a novel subset predicate encryption for the access control in Internet of Things. Compared with the existing subset predicate encryption schemes, the proposed scheme enjoy the better efficiency due to the short private key and the efficient decryption procedure.
2021-02-15
Av, N., Kumar, N. A..  2020.  Image Encryption Using Genetic Algorithm and Bit-Slice Rotation. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
Cryptography is a powerful means of delivering information in a secure manner. Over the years, many image encryption algorithms have been proposed based on the chaotic system to protect the digital image against cryptography attacks. In chaotic encryption, it jumbles the image to vary the framework of the image. This makes it difficult for the attacker to retrieve the original image. This paper introduces an efficient image encryption algorithm incorporating the genetic algorithm, bit plane slicing and bit plane rotation of the digital image. The digital image is sliced into eight planes and each plane is well rotated to give a fully encrypted image after the application of the Genetic Algorithm on each pixel of the image. This makes it less prone to attacks. For decryption, we perform the operations in the reverse order. The performance of this algorithm is measured using various similarity measures like Structural Similarity Index Measure (SSIM). The results exhibit that the proposed scheme provides a stronger level of encryption and an enhanced security level.
Lakshmanan, S. K., Shakkeera, L., Pandimurugan, V..  2020.  Efficient Auto key based Encryption and Decryption using GICK and GDCK methods. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1102–1106.
Security services and share information is provided by the computer network. The computer network is by default there is not security. The Attackers can use this provision to hack and steal private information. Confidentiality, creation, changes, and truthful of data is will be big problems in the network. Many types of research have given many methods regarding this, from these methods Generating Initial Chromosome Key called Generating Dynamic Chromosome Key (GDCK), which is a novel approach. With the help of the RSA (Rivest Shamir Adleman) algorithm, GICK and GDCK have created an initial key. The proposed method has produced new techniques using genetic fitness function for the sender and receiver. The outcome of GICK and GDCK has been verified by NIST (National Institute of Standards Technology) tools and analyzes randomness of auto-generated keys with various methods. The proposed system has involved three examines; it has been yield better P-Values 6.44, 7.05, and 8.05 while comparing existing methods.
Bisht, K., Deshmukh, M..  2020.  Encryption algorithm based on knight’s tour and n-neighbourhood addition. 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN). :31–36.
This paper presents a new algorithm for image encryption by extending the Knight's Tour Problem (KTP). The idea behind the proposed algorithm is to generate a Knight Tour (KT) matrix (m,n) and then divide the image according to the size of knight tour matrix into several sub matrices. Finally, apply n-neighborhood addition modulo encryption algorithm according to the solution of KT matrix over each m × n partition of the image. The proposed algorithm provides image encryption without using the cover images. Results obtained from experiments have shown that the proposed algorithm is efficient, simple and does not disclose any information from encrypted image.
Rabieh, K., Mercan, S., Akkaya, K., Baboolal, V., Aygun, R. S..  2020.  Privacy-Preserving and Efficient Sharing of Drone Videos in Public Safety Scenarios using Proxy Re-encryption. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :45–52.
Unmanned Aerial Vehicles (UAVs) also known as drones are being used in many applications where they can record or stream videos. One interesting application is the Intelligent Transportation Systems (ITS) and public safety applications where drones record videos and send them to a control center for further analysis. These videos are shared by various clients such as law enforcement or emergency personnel. In such cases, the recording might include faces of civilians or other sensitive information that might pose privacy concerns. While the video can be encrypted and stored in the cloud that way, it can still be accessed once the keys are exposed to third parties which is completely insecure. To prevent such insecurity, in this paper, we propose proxy re-encryption based sharing scheme to enable third parties to access only limited videos without having the original encryption key. The costly pairing operations in proxy re-encryption are not used to allow rapid access and delivery of the surveillance videos to third parties. The key management is handled by a trusted control center, which acts as the proxy to re-encrypt the data. We implemented and tested the approach in a realistic simulation environment using different resolutions under ns-3. The implementation results and comparisons indicate that there is an acceptable overhead while it can still preserve the privacy of drivers and passengers.
Chen, Z., Chen, J., Meng, W..  2020.  A New Dynamic Conditional Proxy Broadcast Re-Encryption Scheme for Cloud Storage and Sharing. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :569–576.
Security of cloud storage and sharing is concerned for years since a semi-trusted party, Cloud Server Provider (CSP), has access to user data on cloud server that may leak users' private data without constraint. Intuitively, an efficient solution of protecting cloud data is to encrypt it before uploading to the cloud server. However, a new requirement, data sharing, makes it difficult to manage secret keys among data owners and target users. Therefore conditional proxy broadcast re-encryption technology (CPBRE) is proposed in recent years to provide data encryption and sharing approaches for cloud environment. It enables a data owner to upload encrypted data to the cloud server and a third party proxy can re-encrypted cloud data under certain condition to a new ciphertext so that target users can decrypt re-encrypted data using their own private key. But few CPBRE schemes are applicable for a dynamic cloud environment. In this paper, we propose a new dynamic conditional proxy broadcast reencryption scheme that can be dynamic in system user setting and target user group. The initialization phase does not require a fixed system user setup so that users can join or leave the system in any time. And data owner can dynamically change the group of user he wants to share data with. We also provide security analysis which proves our scheme to be secure against CSP, and performance analysis shows that our scheme exceeds other schemes in terms of functionality and resource cost.
Huang, K..  2020.  Online/Offline Revocable Multi-Authority Attribute-Based Encryption for Edge Computing. 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :563–568.
Multi-authority attribute-based encryption (MA-ABE) is a promising technique to achieve fine-grained access control over encrypted data in cross domain applications. However, the dynamic change of users' access privilege brings security problems, and the heavy encryption computational cost is issue for resource-constrained users in IoT. Moreover, the invalid or illegal ciphertext will waste system resources. We propose a large universe MA-CP-ABE scheme with revocation and online/offline encryption. In our scheme, an efficient revocation mechanism is designed to change users' access privilege timely. Most of the encryption operations have been executed in the user's initialization phase by adding reusable ciphertext pool besides splitting the encryption algorithm to online encryption and offline encryption. Moreover, the scheme supports ciphertext verification and only valid ciphertext can be stored and transmitted. The proposed scheme is proven statically secure under the q-DPBDHE2 assumption. The performance analysis results indicate that the proposed scheme is efficient and suitable for resource constrained users in edge computing for IoT.
Zhu, L., Zhou, X., Zhang, X..  2020.  A Reversible Meaningful Image Encryption Scheme Based on Block Compressive Sensing. 2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP). :326–330.
An efficient and reversible meaningful image encryption scheme is proposed in this paper. The plain image is first compressed and encrypted simultaneously by Adaptive Block Compressive Sensing (ABCS) framework to create a noise-like secret image. Next, Least Significant Bit (LSB) embedding is employed to embed the secret image into a carrier image to generate the final meaningful cipher image. In this scheme, ABCS improves the compression and efficiency performance, and the embedding and extraction operations are absolutely reversible. The simulation results and security analyses are presented to demonstrate the effectiveness, compression, secrecy of the proposed scheme.
Reshma, S., Shaila, K., Venugopal, K. R..  2020.  DEAVD - Data Encryption and Aggregation using Voronoi Diagram for Wireless Sensor Networks. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :635–638.
Wireless Sensor Networks (WSNs) are applied in environmental monitoring, military surveillance, etc., whereas these applications focuses on providing security for sensed data and the nodes are available for a long time. Hence, we propose DEAVD protocol for secure data exchange with limited usage of energy. The DEAVD protocol compresses data to reduces the energy consumption and implements an energy efficient encryption and decryption technique using voronoi diagram paradigm. Thus, there is an improvement in the proposed protocol with respect to security due to the concept adapted during data encryption and aggregation.