Biblio
The decisions made by machines are increasingly comparable in predictive performance to those made by humans, but these decision making processes are often concealed as black boxes. Additional techniques are required to extract understanding, and one such category are explanation methods. This research compares the explanations of two popular forms of artificial intelligence; neural networks and random forests. Researchers in either field often have divided opinions on transparency, and comparing explanations may discover similar ground truths between models. Similarity can help to encourage trust in predictive accuracy alongside transparent structure and unite the respective research fields. This research explores a variety of simulated and real-world datasets that ensure fair applicability to both learning algorithms. A new heuristic explanation method that extends an existing technique is introduced, and our results show that this is somewhat similar to the other methods examined whilst also offering an alternative perspective towards least-important features.
In recent time it has become very crucial for the data center networks (DCN) to broaden the system limit to be able to meet with the increasing need of cloud based applications. A decent DCN topology must comprise of numerous properties for low diameter, high bisection bandwidth, ease of organization and so on. In addition, a DCN topology should depict aptness in failure resiliency, scalability, construction and routing. In this paper, we introduce a new Data Center Network topology termed LevelTree built up with several modules grows as a tree topology and each module is constructed from a complete graph. LevelTree demonstrates great topological properties and it beats critical topologies like Jellyfish, VolvoxDC, and Fattree regarding providing a superior worthwhile plan with greater capacity.
Anti-virus vendors receive hundreds of thousands of malware to be analysed each day. Some are new malware while others are variations or evolutions of existing malware. Because analyzing each malware sample by hand is impossible, automated techniques to analyse and categorize incoming samples are needed. In this work, we explore various machine learning features extracted from malware samples through static analysis for classification of malware binaries into already known malware families. We present a new feature based on control statement shingling that has a comparable accuracy to ordinary opcode n-gram based features while requiring smaller dimensions. This, in turn, results in a shorter training time.
With the progressive development of network applications and software dependency, we need to discover more advanced methods for protecting our systems. Each industry is equally affected, and regardless of whether we consider the vulnerability of the government or each individual household or company, we have to find a sophisticated and secure way to defend our systems. The starting point is to create a reliable intrusion detection mechanism that will help us to identify the attack at a very early stage; otherwise in the cyber security space the intrusion can affect the system negatively, which can cause enormous consequences and damage the system's privacy, security or financial stability. This paper proposes a concise, and easy to use statistical learning procedure, abbreviated NASCA, which is a four-stage intrusion detection method that can successfully detect unwanted intrusion to our systems. The model is static, but it can be adapted to a dynamic set up.
Smartwatches, with motion sensors, are becoming a common utility for users. With the increasing popularity of practical wearable computers, and in particular smartwatches, the security risks linked with sensors on board these devices have yet to be fully explored. Recent research literature has demonstrated the capability of using a smartphone's own accelerometer and gyroscope to infer tap locations; this paper expands on this work to demonstrate a method for inferring smartphone PINs through the analysis of smartwatch motion sensors. This study determines the feasibility and accuracy of inferring user keystrokes on a smartphone through a smartwatch worn by the user. Specifically, we show that with malware accessing only the smartwatch's motion sensors, it is possible to recognize user activity and specific numeric keypad entries. In a controlled scenario, we achieve results no less than 41% and up to 92% accurate for PIN prediction within 5 guesses.
Among most of the cyber attacks that occured, the most drastic are advanced persistent threats. APTs are differ from other attacks as they have multiple phases, often silent for long period of time and launched by adamant, well-funded opponents. These targeted attacks mainly concentrated on government agencies and organizations in industries, as are those involved in international trade and having sensitive data. APTs escape from detection by antivirus solutions, intrusion detection and intrusion prevention systems and firewalls. In this paper we proposes a classification model having 99.8% accuracy, for the detection of APT.
Storage area networking is driving commodity data center switches to support lossless Ethernet (DCB). Unfortunately, to enable DCB for all traffic on arbitrary network topologies, we must address several problems that can arise in lossless networks, e.g., large buffering delays, unfairness, head of line blocking, and deadlock. We propose TCP-Bolt, a TCP variant that not only addresses the first three problems but reduces flow completion times by as much as 70%. We also introduce a simple, practical deadlock-free routing scheme that eliminates deadlock while achieving aggregate network throughput within 15% of ECMP routing. This small compromise in potential routing capacity is well worth the gains in flow completion time. We note that our results on deadlock-free routing are also of independent interest to the storage area networking community. Further, as our hardware testbed illustrates, these gains are achievable today, without hardware changes to switches or NICs.
Botnet detection represents one of the most crucial prerequisites of successful botnet neutralization. This paper explores how accurate and timely detection can be achieved by using supervised machine learning as the tool of inferring about malicious botnet traffic. In order to do so, the paper introduces a novel flow-based detection system that relies on supervised machine learning for identifying botnet network traffic. For use in the system we consider eight highly regarded machine learning algorithms, indicating the best performing one. Furthermore, the paper evaluates how much traffic needs to be observed per flow in order to capture the patterns of malicious traffic. The proposed system has been tested through the series of experiments using traffic traces originating from two well-known P2P botnets and diverse non-malicious applications. The results of experiments indicate that the system is able to accurately and timely detect botnet traffic using purely flow-based traffic analysis and supervised machine learning. Additionally, the results show that in order to achieve accurate detection traffic flows need to be monitored for only a limited time period and number of packets per flow. This indicates a strong potential of using the proposed approach within a future on-line detection framework.
As the ubiquity of smartphones increases we see an increase in the popularity of location based services. Specifically, online social networks provide services such as alerting the user of friend co-location, and finding a user's k nearest neighbors. Location information is sensitive, which makes privacy a strong concern for location based systems like these. We have built one such service that allows two parties to share location information privately and securely. Our system allows every user to maintain and enforce their own policy. When one party, (Alice), queries the location of another party, (Bob), our system uses homomorphic encryption to test if Alice is within Bob's policy. If she is, Bob's location is shared with Alice only. If she is not, no user location information is shared with anyone. Due to the importance and sensitivity of location information, and the easily deployable design of our system, we offer a useful, practical, and important system to users. Our main contribution is a flexible, practical protocol for private proximity testing, a useful and efficient technique for representing location values, and a working implementation of the system we design in this paper. It is implemented as an Android application with the Facebook online social network used for communication between users.
The use of multiple independent spanning trees (ISTs) for data broadcasting in networks provides a number of advantages, including the increase of fault-tolerance, bandwidth and security. Thus, the designs of multiple ISTs on several classes of networks have been widely investigated. In this paper, we give an algorithm to construct ISTs on enhanced hypercubes Qn,k, which contain folded hypercubes as a subclass. Moreover, we show that these ISTs are near optimal for heights and path lengths. Let D(Qn,k) denote the diameter of Qn,k. If n - k is odd or n - k ∈ {2; n}, we show that all the heights of ISTs are equal to D(Qn,k) + 1, and thus are optimal. Otherwise, we show that each path from a node to the root in a spanning tree has length at most D(Qn,k) + 2. In particular, no more than 2.15 percent of nodes have the maximum path length. As a by-product, we improve the upper bound of wide diameter (respectively, fault diameter) of Qn,k from these path lengths.