Visible to the public Biblio

Found 934 results

Filters: Keyword is Servers  [Clear All Filters]
2020-01-21
Fujdiak, Radek, Blazek, Petr, Mlynek, Petr, Misurec, Jiri.  2019.  Developing Battery of Vulnerability Tests for Industrial Control Systems. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.

Nowadays, the industrial control systems (ICS) face many challenges, where security is becoming one of the most crucial. This fact is caused by new connected environment, which brings among new possibilities also new vulnerabilities, threats, or possible attacks. The criminal acts in the ICS area increased over the past years exponentially, which caused the loss of billions of dollars. This also caused classical Intrusion Detection Systems and Intrusion Prevention Systems to evolve in order to protect among IT also ICS networks. However, these systems need sufficient data such as traffic logs, protocol information, attack patterns, anomaly behavior marks and many others. To provide such data, the requirements for the test environment are summarized in this paper. Moreover, we also introduce more than twenty common vulnerabilities across the ICS together with information about possible risk, attack vector (point), possible detection methods and communication layer occurrence. Therefore, the paper might be used as a base-ground for building sufficient data generator for machine learning and artificial intelligence algorithms often used in ICS/IDS systems.

Dong, Xiao, Li, Qianmu, Hou, Jun, Zhang, Jing, Liu, Yaozong.  2019.  Security Risk Control of Water Power Generation Industrial Control Network Based on Attack and Defense Map. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService). :232–236.

With the latest development of hydroelectric power generation system, the industrial control network system of hydroelectric power generation has undergone the transformation from the dedicated network, using proprietary protocols to an increasingly open network, adopting standard protocols, and increasing integration with hydroelectric power generation system. It generally believed that with the improvement of the smart grid, the future hydroelectric power generation system will rely more on the powerful network system. The general application of standardized communication protocol and intelligent electronic equipment in industrial control network provides a technical guarantee for realizing the intellectualization of hydroelectric power generation system but also brings about the network security problems that cannot be ignored. In order to solve the vulnerability of the system, we analyze and quantitatively evaluate the industrial control network of hydropower generation as a whole, and propose a set of attack and defense strategies. The method of vulnerability assessment with high diversity score proposed by us avoids the indifference of different vulnerability score to the greatest extent. At the same time, we propose an optimal attack and defense decision algorithm, which generates the optimal attack and defense strategy. The work of this paper can distinguish the actual hazards of vulnerable points more effectively.

Liang, Xiao, Chen, Heyao.  2019.  A SDN-Based Hierarchical Authentication Mechanism for IPv6 Address. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :225–225.
The emergence of IPv6 protocol extends the address pool, but it also exposes all the Internet-connected devices to danger. Currently, there are some traditional schemes on security management of network addresses, such as prevention, traceability and encryption authentication, but few studies work on IPv6 protocol. In this paper, we propose a hierarchical authentication mechanism for the IPv6 source address with the technology of software defined network (SDN). This mechanism combines the authentication of three parts, namely the access network, the intra-domain and the inter-domain. And it can provide a fine-grained security protection for the devices using IPv6 addresses.
Li, Chunlei, Wu, Qian, Li, Hewu, Zhou, Jiang.  2019.  SDN-Ti: A General Solution Based on SDN to Attacker Traceback and Identification in IPv6 Networks. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–7.

Network attacks have become a growing threat to the current Internet. For the enhancement of network security and accountability, it is urgent to find the origin and identity of the adversary who misbehaves in the network. Some studies focus on embedding users' identities into IPv6 addresses, but such design cannot support the Stateless Address Autoconfiguration (SLAAC) protocol which is widely deployed nowadays. In this paper, we propose SDN-Ti, a general solution to traceback and identification for attackers in IPv6 networks based on Software Defined Network (SDN). In our proposal, the SDN switch performs a translation between the source IPv6 address of the packet and its trusted ID-encoded address generated by the SDN controller. The network administrator can effectively identify the attacker by parsing the malicious packets when the attack incident happens. Our solution not only avoids the heavy storage overhead and time synchronism problems, but also supports multiple IPv6 address assignment scenarios. What's more, SDN-Ti does not require any modification on the end device, hence can be easily deployed. We implement SDN-Ti prototype and evaluate it in a real IPv6 testbed. Experiment results show that our solution only brings very little extra performance cost, and it shows considerable performance in terms of latency, CPU consumption and packet loss compared to the normal forwarding method. The results indicate that SDN-Ti is feasible to be deployed in practice with a large number of users.

Caprolu, Maurantonio, Di Pietro, Roberto, Lombardi, Flavio, Raponi, Simone.  2019.  Edge Computing Perspectives: Architectures, Technologies, and Open Security Issues. 2019 IEEE International Conference on Edge Computing (EDGE). :116–123.

Edge and Fog Computing will be increasingly pervasive in the years to come due to the benefits they bring in many specific use-case scenarios over traditional Cloud Computing. Nevertheless, the security concerns Fog and Edge Computing bring in have not been fully considered and addressed so far, especially when considering the underlying technologies (e.g. virtualization) instrumental to reap the benefits of the adoption of the Edge paradigm. In particular, these virtualization technologies (i.e. Containers, Real Time Operating Systems, and Unikernels), are far from being adequately resilient and secure. Aiming at shedding some light on current technology limitations, and providing hints on future research security issues and technology development, in this paper we introduce the main technologies supporting the Edge paradigm, survey existing issues, introduce relevant scenarios, and discusses benefits and caveats of the different existing solutions in the above introduced scenarios. Finally, we provide a discussion on the current security issues in the introduced context, and strive to outline future research directions in both security and technology development in a number of Edge/Fog scenarios.

Singh, Malvika, Mehtre, B.M., Sangeetha, S..  2019.  User Behavior Profiling Using Ensemble Approach for Insider Threat Detection. 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA). :1–8.

The greatest threat towards securing the organization and its assets are no longer the attackers attacking beyond the network walls of the organization but the insiders present within the organization with malicious intent. Existing approaches helps to monitor, detect and prevent any malicious activities within an organization's network while ignoring the human behavior impact on security. In this paper we have focused on user behavior profiling approach to monitor and analyze user behavior action sequence to detect insider threats. We present an ensemble hybrid machine learning approach using Multi State Long Short Term Memory (MSLSTM) and Convolution Neural Networks (CNN) based time series anomaly detection to detect the additive outliers in the behavior patterns based on their spatial-temporal behavior features. We find that using Multistate LSTM is better than basic single state LSTM. The proposed method with Multistate LSTM can successfully detect the insider threats providing the AUC of 0.9042 on train data and AUC of 0.9047 on test data when trained with publically available dataset for insider threats.

2020-01-20
Laaboudi, Younes, Olivereau, Alexis, Oualha, Nouha.  2019.  An Intrusion Detection and Response Scheme for CP-ABE-Encrypted IoT Networks. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.

This paper introduces a new method of applying both an Intrusion Detection System (IDS) and an Intrusion Response System (IRS) to communications protected using Ciphertext-Policy Attribute-based Encryption (CP-ABE) in the context of the Internet of Things. This method leverages features specific to CP-ABE in order to improve the detection capabilities of the IDS and the response ability of the network. It also enables improved privacy towards the users through group encryption rather than one-to-one shared key encryption as the policies used in the CP-ABE can easily include the IDS as an authorized reader. More importantly, it enables different levels of detection and response to intrusions, which can be crucial when using anomaly-based detection engines.

Warabino, Takayuki, Suzuki, Yusuke, Miyazawa, Masanori.  2019.  ROS-based Robot Development Toward Fully Automated Network Management. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.

While the introduction of the softwarelization technologies such as SDN and NFV transfers main focus of network management from hardware to software, the network operators still have to care for a lot of network and computing equipment located in the network center. Toward fully automated network management, we believe that robotic approach will be significant, meaning that robot will care for the physical equipment on behalf of human. This paper explains our experience and insight gained throughout development of a network management robot. We utilize ROS(Robot Operating System) which is a powerful platform for robot development and secures the ease of development and expandability. Our roadmap of the network management robot is also shown as well as three use cases such as environmental monitoring, operator assistance and autonomous maintenance of the equipment. Finally, the paper briefly explains experimental results conducted in a commercial network center.

2020-01-13
Seidel, Felix, Krentz, Konrad-Felix, Meinel, Christoph.  2019.  Deep En-Route Filtering of Constrained Application Protocol (CoAP) Messages on 6LoWPAN Border Routers. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :201–206.
Devices on the Internet of Things (IoT) are usually battery-powered and have limited resources. Hence, energy-efficient and lightweight protocols were designed for IoT devices, such as the popular Constrained Application Protocol (CoAP). Yet, CoAP itself does not include any defenses against denial-of-sleep attacks, which are attacks that aim at depriving victim devices of entering low-power sleep modes. For example, a denial-of-sleep attack against an IoT device that runs a CoAP server is to send plenty of CoAP messages to it, thereby forcing the IoT device to expend energy for receiving and processing these CoAP messages. All current security solutions for CoAP, namely Datagram Transport Layer Security (DTLS), IPsec, and OSCORE, fail to prevent such attacks. To fill this gap, Seitz et al. proposed a method for filtering out inauthentic and replayed CoAP messages "en-route" on 6LoWPAN border routers. In this paper, we expand on Seitz et al.'s proposal in two ways. First, we revise Seitz et al.'s software architecture so that 6LoWPAN border routers can not only check the authenticity and freshness of CoAP messages, but can also perform a wide range of further checks. Second, we propose a couple of such further checks, which, as compared to Seitz et al.'s original checks, more reliably protect IoT devices that run CoAP servers from remote denial-of-sleep attacks, as well as from remote exploits. We prototyped our solution and successfully tested its compatibility with Contiki-NG's CoAP implementation.
Guanyu, Chen, Yunjie, Han, Chang, Li, Changrui, Lin, Degui, Fang, Xiaohui, Rong.  2019.  Data Acquisition Network and Application System Based on 6LoWPAN and IPv6 Transition Technology. 2019 IEEE 2nd International Conference on Electronics Technology (ICET). :78–83.
In recent years, IPv6 will gradually replace IPv4 with IPv4 address exhaustion and the rapid development of the Low-Power Wide-Area network (LPWAN) wireless communication technology. This paper proposes a data acquisition and application system based on 6LoWPAN and IPv6 transition technology. The system uses 6LoWPAN and 6to4 tunnel to realize integration of the internal sensor network and Internet to improve the adaptability of the gateway and reduce the average forwarding delay and packet loss rate of small data packet. Moreover, we design and implement the functions of device access management, multiservice data storage and affair data service by combining the C/S architecture with the actual uploaded river quality data. The system has the advantages of flexible networking, low power consumption, rich IPv6 address, high communication security, and strong reusability.
2020-01-07
Rao, Deepthi, Kumar, D.V.N. Siva, Thilagam, P. Santhi.  2018.  An Efficient Multi-User Searchable Encryption Scheme without Query Transformation over Outsourced Encrypted Data. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1-4.

Searchable Encryption (SE) schemes provide security and privacy to the cloud data. The existing SE approaches enable multiple users to perform search operation by using various schemes like Broadcast Encryption (BE), Attribute-Based Encryption (ABE), etc. However, these schemes do not allow multiple users to perform the search operation over the encrypted data of multiple owners. Some SE schemes involve a Proxy Server (PS) that allow multiple users to perform the search operation. However, these approaches incur huge computational burden on PS due to the repeated encryption of the user queries for transformation purpose so as to ensure that users' query is searchable over the encrypted data of multiple owners. Hence, to eliminate this computational burden on PS, this paper proposes a secure proxy server approach that performs the search operation without transforming the user queries. This approach also returns the top-k relevant documents to the user queries by using Euclidean distance similarity approach. Based on the experimental study, this approach is efficient with respect to search time and accuracy.

2020-01-02
Harris, Albert, Snader, Robin, Kravets, Robin.  2018.  Aggio: A Coupon Safe for Privacy-Preserving Smart Retail Environments. 2018 IEEE/ACM Symposium on Edge Computing (SEC). :174–186.

Researchers and industry experts are looking at how to improve a shopper's experience and a store's revenue by leveraging and integrating technologies at the edges of the network, such as Internet-of-Things (IoT) devices, cloud-based systems, and mobile applications. The integration of IoT technology can now be used to improve purchasing incentives through the use of electronic coupons. Research has shown that targeted electronic coupons are the most effective and coupons presented to the shopper when they are near the products capture the most shoppers' dollars. Although it is easy to imagine coupons being broadcast to a shopper's mobile device over a low-power wireless channel, such a solution must be able to advertise many products, target many individual shoppers, and at the same time, provide shoppers with their desired level of privacy. To support this type of IoT-enabled shopping experience, we have designed Aggio, an electronic coupon distribution system that enables the distribution of localized, targeted coupons while supporting user privacy and security. Aggio uses cryptographic mechanisms to not only provide security but also to manage shopper groups e.g., bronze, silver, and gold reward programs) and minimize resource usage, including bandwidth and energy. The novel use of cryptographic management of coupons and groups allows Aggio to reduce bandwidth use, as well as reduce the computing and energy resources needed to process incoming coupons. Through the use of local coupon storage on the shopper's mobile device, the shopper does not need to query the cloud and so does not need to expose all of the details of their shopping decisions. Finally, the use of privacy preserving communication between the shopper's mobile device and the CouponHubs that are distributed throughout the retail environment allows the shopper to expose their location to the store without divulging their location to all other shoppers present in the store.

2019-12-30
Sharma, Mukesh Kumar, Somwanshi, Devendra.  2018.  Improvement in Homomorphic Encryption Algorithm with Elliptic Curve Cryptography and OTP Technique. 2018 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE). :1–6.
Cloud computing is a technology is where client require not to stress over the expense of equipment establishment and their support cost. Distributed computing is presently turned out to be most prominent innovation on account of its accessibility, ease and some different elements. Yet, there is a few issues in distributed computing, the principle one is security in light of the fact that each client store their valuable information on the system so they need their information ought to be shielded from any unapproved get to, any progressions that isn't done for client's benefit. To take care of the issue of Key administration, Key Sharing different plans have been proposed. The outsider examiner is the plan for key administration and key sharing. The primary preferred standpoint of this is the cloud supplier can encourage the administration which was accessible by the customary outsider evaluator and make it trustful. The outsider examining plan will be fizzled, if the outsider's security is endangered or of the outsider will be malignant. To take care of the issue, there is another modular for key sharing and key administration in completely Homomorphic Encryption conspire is outlined. In this paper we utilized the symmetric key understanding calculation named Diffie Hellman to make session key between two gatherings who need to impart and elliptic curve cryptography to create encryption keys rather than RSA and have utilized One Time Password (OTP) for confirming the clients.
Morita, Kazunari, Yoshimura, Hiroki, Nishiyama, Masashi, Iwai, Yoshio.  2018.  Protecting Personal Information using Homomorphic Encryption for Person Re-identification. 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE). :166–167.
We investigate how to protect features corresponding to personal information using homomorphic encryption when matching people in several camera views. Homomorphic encryption can compute a distance between features without decryption. Thus, our method is able to use a computing server on a public network while protecting personal information. To apply homomorphic encryption, our method uses linear quantization to represent each element of the feature as integers. Experimental results show that there is no significant difference in the accuracy of person re-identification with or without homomorphic encryption and linear quantization.
Yang, Yang, Chang, Xiaolin, Han, Zhen, Li, Lin.  2018.  Delay-Aware Secure Computation Offloading Mechanism in a Fog-Cloud Framework. 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). :346–353.
Fog-Cloud framework is being regarded as a more promising technology to provide performance guarantee for IoT applications, which not only have higher requirements on computation resources, but also are delay and/or security sensitive. In this framework, a delay and security-sensitive computation task is usually divided into several sub-tasks, which could be offloaded to either fog or cloud computing servers, referred to as offloading destinations. Sub-tasks may exchange information during their processing and then have requirement on transmission bandwidth. Different destinations produce different completion delays of a sub-task, affecting the corresponding task delay. The existing offloading approaches either considered only a single type of offloading destinations or ignored delay and/or security constraint. This paper studies a computation offloading problem in the fog-cloud scenario where not only computation and security capabilities of offloading destinations may be different, but also bandwidth and delay of links may be different. We first propose a joint offloading approach by formulating the problem as a form of Mixed Integer Programming Multi-Commodity Flow to maximize the fog-cloud provider's revenue without sacrificing performance and security requirements of users. We also propose a greedy algorithm for the problem. Extensive simulation results under various network scales show that the proposed computation offloading mechanism achieves higher revenue than the conventional single-type computation offloading under delay and security constraints.
2019-12-18
Kolisnyk, Maryna, Kharchenko, Vyacheslav, Iryna, Piskachova.  2019.  IoT Server Availability Considering DDoS-Attacks: Analysis of Prevention Methods and Markov Model. 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT). :51-56.

The server is an important for storing data, collected during the diagnostics of Smart Business Center (SBC) as a subsystem of Industrial Internet of Things including sensors, network equipment, components for start and storage of monitoring programs and technical diagnostics. The server is exposed most often to various kind of attacks, in particular, aimed at processor, interface system, random access memory. The goal of the paper is analyzing the methods of the SBC server protection from malicious actions, as well as the development and investigation of the Markov model of the server's functioning in the SBC network, taking into account the impact of DDoS-attacks.

Kirti, Agrawal, Namrata, Kumar, Sunil, Sah, D.K..  2018.  Prevention of DDoS Attack through Harmonic Homogeneity Difference Mechanism on Traffic Flow. 2018 4th International Conference on Recent Advances in Information Technology (RAIT). :1-6.

The ever rising attacks on IT infrastructure, especially on networks has become the cause of anxiety for the IT professionals and the people venturing in the cyber-world. There are numerous instances wherein the vulnerabilities in the network has been exploited by the attackers leading to huge financial loss. Distributed denial of service (DDoS) is one of the most indirect security attack on computer networks. Many active computer bots or zombies start flooding the servers with requests, but due to its distributed nature throughout the Internet, it cannot simply be terminated at server side. Once the DDoS attack initiates, it causes huge overhead to the servers in terms of its processing capability and service delivery. Though, the study and analysis of request packets may help in distinguishing the legitimate users from among the malicious attackers but such detection becomes non-viable due to continuous flooding of packets on servers and eventually leads to denial of service to the authorized users. In the present research, we propose traffic flow and flow count variable based prevention mechanism with the difference in homogeneity. Its simplicity and practical approach facilitates the detection of DDoS attack at the early stage which helps in prevention of the attack and the subsequent damage. Further, simulation result based on different instances of time has been shown on T-value including generation of simple and harmonic homogeneity for observing the real time request difference and gaps.

Guleria, Akshit, Kalra, Evneet, Gupta, Kunal.  2019.  Detection and Prevention of DoS Attacks on Network Systems. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :544-548.

Distributed Denial of Service (DDoS) strike is a malevolent undertaking to irritate regular action of a concentrated on server, organization or framework by overwhelming the goal or its incorporating establishment with a flood of Internet development. DDoS ambushes achieve feasibility by utilizing different exchanged off PC structures as wellsprings of strike action. Mishandled machines can join PCs and other masterminded resources, for instance, IoT contraptions. From an anomalous express, a DDoS attack looks like a vehicle convergence ceasing up with the road, shielding standard action from meeting up at its pined for objective.

Chugunkov, Ilya V., Fedorov, Leonid O., Achmiz, Bela Sh., Sayfullina, Zarina R..  2018.  Development of the Algorithm for Protection against DDoS-Attacks of Type Pulse Wave. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :292-294.

Protection from DDoS-attacks is one of the most urgent problems in the world of network technologies. And while protect systems has algorithms for detection and preventing DDoS attacks, there are still some unresolved problems. This article is devoted to the DDoS-attack called Pulse Wave. Providing a brief introduction to the world of network technologies and DDoS-attacks, in particular, aims at the algorithm for protecting against DDoS-attack Pulse Wave. The main goal of this article is the implementation of traffic classifier that adds rules for infected computers to put them into a separate queue with limited bandwidth. This approach reduces their load on the service and, thus, firewall neutralises the attack.

M, Suchitra, S M, Renuka, Sreerekha, Lingaraj K..  2018.  DDoS Prevention Using D-PID. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS). :453-457.

In recent years, the attacks on systems have increased and among such attack is Distributed Denial of Service (DDoS) attack. The path identifiers (PIDs) used for inter-domain routing are static, which makes it easier the attack easier. To address this vulnerability, this paper addresses the usage of Dynamic Path Identifiers (D-PIDs) for routing. The PID of inter-domain path connector is kept oblivious and changes dynamically, thus making it difficult to attack the system. The prototype designed with major components like client, server and router analyses the outcome of D-PID usage instead of PIDs. The results show that, DDoS attacks can be effectively prevented if Dynamic Path Identifiers (D-PIDs) are used instead of Static Path Identifiers (PIDs).

Saharan, Shail, Gupta, Vishal.  2019.  Prevention and Mitigation of DNS Based DDoS Attacks in SDN Environment. 2019 11th International Conference on Communication Systems Networks (COMSNETS). :571-573.

Denial-of-Service attack (DoS attack) is an attack on network in which an attacker tries to disrupt the availability of network resources by overwhelming the target network with attack packets. In DoS attack it is typically done using a single source, and in a Distributed Denial-of-Service attack (DDoS attack), like the name suggests, multiple sources are used to flood the incoming traffic of victim. Typically, such attacks use vulnerabilities of Domain Name System (DNS) protocol and IP spoofing to disrupt the normal functioning of service provider or Internet user. The attacks involving DNS, or attacks exploiting vulnerabilities of DNS are known as DNS based DDOS attacks. Many of the proposed DNS based DDoS solutions try to prevent/mitigate such attacks using some intelligent non-``network layer'' (typically application layer) protocols. Utilizing the flexibility and programmability aspects of Software Defined Networks (SDN), via this proposed doctoral research it is intended to make underlying network intelligent enough so as to prevent DNS based DDoS attacks.

Misono, Masanori, Yoshida, Kaito, Hwang, Juho, Shinagawa, Takahiro.  2018.  Distributed Denial of Service Attack Prevention at Source Machines. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :488-495.

Distributed denial of service (DDoS) attacks is a serious cyberattack that exhausts target machine's processing capacity by sending a huge number of packets from hijacked machines. To minimize resource consumption caused by DDoS attacks, filtering attack packets at source machines is the best approach. Although many studies have explored the detection of DDoS attacks, few studies have proposed DDoS attack prevention schemes that work at source machines. We propose a reliable, lightweight, transparent, and flexible DDoS attack prevention scheme that works at source machines. In this scheme, we employ a hypervisor with a packet filtering mechanism on each managed machine to allow the administrator to easily and reliably suppress packet transmissions. To make the proposed scheme lightweight and transparent, we exploit a thin hypervisor that allows pass-through access to hardware (except for network devices) from the operating system, thereby reducing virtualization overhead and avoiding compromising user experience. To make the proposed scheme flexible, we exploit a configurable packet filtering mechanism with a guaranteed safe code execution mechanism that allows the administrator to provide a filtering policy as executable code. In this study, we implemented the proposed scheme using BitVisor and the Berkeley Packet Filter. Experimental results show that the proposed scheme can suppress arbitrary packet transmissions with negligible latency and throughput overhead compared to a bare metal system without filtering mechanisms.

Mohammed, Saif Saad, Hussain, Rasheed, Senko, Oleg, Bimaganbetov, Bagdat, Lee, JooYoung, Hussain, Fatima, Kerrache, Chaker Abdelaziz, Barka, Ezedin, Alam Bhuiyan, Md Zakirul.  2018.  A New Machine Learning-based Collaborative DDoS Mitigation Mechanism in Software-Defined Network. 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–8.
Software Defined Network (SDN) is a revolutionary idea to realize software-driven network with the separation of control and data planes. In essence, SDN addresses the problems faced by the traditional network architecture; however, it may as well expose the network to new attacks. Among other attacks, distributed denial of service (DDoS) attacks are hard to contain in such software-based networks. Existing DDoS mitigation techniques either lack in performance or jeopardize the accuracy of the attack detection. To fill the voids, we propose in this paper a machine learning-based DDoS mitigation technique for SDN. First, we create a model for DDoS detection in SDN using NSL-KDD dataset and then after training the model on this dataset, we use real DDoS attacks to assess our proposed model. Obtained results show that the proposed technique equates favorably to the current techniques with increased performance and accuracy.
Kim, Kyoungmin, You, Youngin, Park, Mookyu, Lee, Kyungho.  2018.  DDoS Mitigation: Decentralized CDN Using Private Blockchain. 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). :693–696.
Distributed Denial of Service (DDoS) attacks are intense and are targeted to major infrastructure, governments and military organizations in each country. There are a lot of mitigations about DDoS, and the concept of Content Delivery Network (CDN) has been able to avoid attacks on websites. However, since the existing CDN system is fundamentally centralized, it may be difficult to prevent DDoS. This paper describes the distributed CDN Schema using Private Blockchain which solves the problem of participation of existing transparent and unreliable nodes. This will explain DDoS mitigation that can be used by military and government agencies.
Mohan, K Manju.  2018.  An Efficient system to stumble on and Mitigate DDoS attack in cloud Environment. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :1855–1857.
Cloud computing is an assured progression inside the future of facts generation. It's far a sub-domain of network security. These days, many huge or small organizations are switching to cloud which will shop and arrange their facts. As a result, protection of cloud networks is the want of the hour. DDoS is a killer software for cloud computing environments on net today. It is a distributed denial of carrier. we will beat the ddos attacks if we have the enough assets. ddos attacks can be countered by means of dynamic allocation of the assets. In this paper the attack is detected as early as possible and prevention methods is done and also mitigation method is also implemented thus attack can be avoided before it may occur.