Biblio
Due to practical constraints in preventing phishing through public network or insecure communication channels, simple physical unclonable function (PDF)-based authentication protocol with unrestricted queries and transparent responses is vulnerable to modeling and replay attacks. In this paper, we present a PUF-based authentication method to mitigate the practical limitations in applications where a resource-rich server authenticates a device with no strong restriction imposed on the type of PUF designs or any additional protection on the binary channel used for the authentication. Our scheme uses an active deception protocol to prevent machine learning (ML) attacks on a device. The monolithic system makes collection of challenge response pairs (CRPs) easy for model building during enrollment but prohibitively time consuming upon device deployment. A genuine server can perform a mutual authentication with the device at any time with a combined fresh challenge contributed by both the server and the device. The message exchanged in clear does not expose the authentic CRPs. The false PUF multiplexing is fortified against prediction of waiting time by doubling the time penalty for every unsuccessful authentication.
The real-time map updating enables vehicles to obtain accurate and timely traffic information. Especially for driverless cars, real-time map updating can provide high-precision map service to assist the navigation, which requires vehicles to actively upload the latest road conditions. However, due to the untrusted network environment, it is difficult for the real-time map updating server to evaluate the authenticity of the road information from the vehicles. In order to prevent malicious vehicles from deliberately spreading false information and protect the privacy of vehicles from tracking attacks, this paper proposes a trust-based real-time map updating scheme. In this scheme, the public key is used as the identifier of the vehicle for anonymous communication with conditional anonymity. In addition, the blockchain is applied to provide the existence proof for the public key certificate of the vehicle. At the same time, to avoid the spread of false messages, a trust evaluation algorithm is designed. The fog node can validate the received massages from vehicles using Bayesian Inference Model. Based on the verification results, the road condition information is sent to the real-time map updating server so that the server can update the map in time and prevent the secondary traffic accident. In order to calculate the trust value offset for the vehicle, the fog node generates a rating for each message source vehicle, and finally adds the relevant data to the blockchain. According to the result of security analysis, this scheme can guarantee the anonymity and prevent the Sybil attack. Simulation results show that the proposed scheme is effective and accurate in terms of real-time map updating and trust values calculating.
Quick UDP Internet Connections (QUIC) is an experimental transport protocol designed to primarily reduce connection establishment and transport latency, as well as to improve security standards with default end-to-end encryption in HTTPbased applications. QUIC is a multiplexed and secure transport protocol fostered by Google and its design emerged from the urgent need of innovation in the transport layer, mainly due to difficulties extending TCP and deploying new protocols. While still under standardisation, a non-negligble fraction of the Internet's traffic, more than 7% of a European Tier1-ISP, is already running over QUIC and it constitutes more than 30% of Google's egress traffic [1].
Social Virtual Reality based Learning Environments (VRLEs) such as vSocial render instructional content in a three-dimensional immersive computer experience for training youth with learning impediments. There are limited prior works that explored attack vulnerability in VR technology, and hence there is a need for systematic frameworks to quantify risks corresponding to security, privacy, and safety (SPS) threats. The SPS threats can adversely impact the educational user experience and hinder delivery of VRLE content. In this paper, we propose a novel risk assessment framework that utilizes attack trees to calculate a risk score for varied VRLE threats with rate and duration of threats as inputs. We compare the impact of a well-constructed attack tree with an adhoc attack tree to study the trade-offs between overheads in managing attack trees, and the cost of risk mitigation when vulnerabilities are identified. We use a vSocial VRLE testbed in a case study to showcase the effectiveness of our framework and demonstrate how a suitable attack tree formalism can result in a more safer, privacy-preserving and secure VRLE system.
A semi-quantum key distribution (SQKD) protocol allows two users A and B to establish a shared secret key that is secure against an all-powerful adversary E even when one of the users (e.g., B) is semi-quantum or classical in nature while the other is fully-quantum. A mediated SQKD protocol allows two semi-quantum users to establish a key with the help of an adversarial quantum server. We introduce the concept of a multi-mediated SQKD protocol where two (or more) adversarial quantum servers are used. We construct a new protocol in this model and show how it can withstand high levels of quantum noise, though at a cost to efficiency. We perform an information theoretic security analysis and, along the way, prove a general security result applicable to arbitrary MM-SQKD protocols. Finally, a comparison is made to previous (S)QKD protocols.
It seems impossible to certify that a remote hosting service does not leak its users' data - or does quantum mechanics make it possible? We investigate if a server hosting data can information-theoretically prove its definite deletion using a "BB84-like" protocol. To do so, we first rigorously introduce an alternative to privacy by encryption: privacy delegation. We then apply this novel concept to provable deletion and remote data storage. For both tasks, we present a protocol, sketch its partial security, and display its vulnerability to eavesdropping attacks targeting only a few bits.
Tensor operations, such as matrix multiplication, are central to large-scale machine learning applications. These operations can be carried out on a distributed computing platform with a master server at the user side and multiple workers in the cloud operating in parallel. For distributed platforms, it has been recently shown that coding over the input data matrices can reduce the computational delay, yielding a tradeoff between recovery threshold and communication load. In this work, we impose an additional security constraint on the data matrices and assume that workers can collude to eavesdrop on the content of these data matrices. Specifically, we introduce a novel class of secure codes, referred to as secure generalized PolyDot codes, that generalizes previously published non-secure versions of these codes for matrix multiplication. These codes extend the state-of-the-art by allowing a flexible trade-off between recovery threshold and communication load for a fixed maximum number of colluding workers.
Named data network (NDN) is one of the most promising information-centric networking architectures, where the core concept is to focus on the named data (or contents) themselves. Users in NDN can easily send a request packet to get the desired content regardless of its address. The routers in NDN have cache functionality to make the users instantly retrieve the desired file. Thus, the user can immediately get the desired file from the nearby nodes instead of the remote host. Nevertheless, NDN is a novel proposal and there are still some open issues to be resolved. In view of previous research, it is a challenge to achieve access control on a specific user and support potential receivers simultaneously. In order to solve it, we present a fine-grained access control mechanism tailored for NDN, supporting data confidentiality, potential receivers, and mobility. Compared to previous works, this is the first to support fine-grained access control and potential receivers. Furthermore, the proposed scheme achieves provable security under the DBDH assumption.
Statistics suggests, proceeding towards IoT generation, is increasing IoT devices at a drastic rate. This will be very challenging for our present-day network infrastructure to manage, this much of data. This may risk, both security and traffic collapsing. We have proposed an infrastructure with Fog Computing. The Fog layer consists two layers, using the concepts of Service oriented Architecture (SOA) and the Agent based composition model which ensures the traffic usage reduction. In order to have a robust and secured system, we have modified the Fog based agent model by replacing the SOA with secured Named Data Network (NDN) protocol. Knowing the fact that NDN has the caching layer, we are combining NDN and with Fog, as it can overcome the forwarding strategy limitation and memory constraints of NDN by the Agent Society, in the Middle layer along with Trust management.