Visible to the public Biblio

Found 934 results

Filters: Keyword is Servers  [Clear All Filters]
2018-01-16
Kansal, V., Dave, M..  2017.  DDoS attack isolation using moving target defense. 2017 International Conference on Computing, Communication and Automation (ICCCA). :511–514.

Among the several threats to cyber services Distributed denial-of-service (DDoS) attack is most prevailing nowadays. DDoS involves making an online service unavailable by flooding the bandwidth or resources of a targeted system. It is easier for an insider having legitimate access to the system to circumvent any security controls thus resulting in insider attack. To mitigate insider assisted DDoS attacks, this paper proposes a moving target defense mechanism that involves isolation of insiders from innocent clients by using attack proxies. Further using the concept of load balancing an effective algorithm to detect and handle insider attack is developed with the aim of maximizing attack isolation while minimizing the total number of proxies used.

Yamacc, M., Sankur, B., Cemgil, A. T..  2017.  Malicious users discrimination in organizec attacks using structured sparsity. 2017 25th European Signal Processing Conference (EUSIPCO). :266–270.

Communication networks can be the targets of organized and distributed attacks such as flooding-type DDOS attack in which malicious users aim to cripple a network server or a network domain. For the attack to have a major effect on the network, malicious users must act in a coordinated and time correlated manner. For instance, the members of the flooding attack increase their message transmission rates rapidly but also synchronously. Even though detection and prevention of the flooding attacks are well studied at network and transport layers, the emergence and wide deployment of new systems such as VoIP (Voice over IP) have turned flooding attacks at the session layer into a new defense challenge. In this study a structured sparsity based group anomaly detection system is proposed that not only can detect synchronized attacks, but also identify the malicious groups from normal users by jointly estimating their members, structure, starting and end points. Although we mainly focus on security on SIP (Session Initiation Protocol) servers/proxies which are widely used for signaling in VoIP systems, the proposed scheme can be easily adapted for any type of communication network system at any layer.

Goncalves, J. A., Faria, V. S., Vieira, G. B., Silva, C. A. M., Mascarenhas, D. M..  2017.  WIDIP: Wireless distributed IPS for DDoS attacks. 2017 1st Cyber Security in Networking Conference (CSNet). :1–3.

This paper presents a wireless intrusion prevention tool for distributed denial of service attacks DDoS. This tool, called Wireless Distributed IPS WIDIP, uses a different collection of data to identify attackers from inside a private network. WIDIP blocks attackers and also propagates its information to other wireless routers that run the IPS. This communication behavior provides higher fault tolerance and stops attacks from different network endpoints. WIDIP also block network attackers at its first hop and thus reduce the malicious traffic near its source. Comparative tests of WIDIP with other two tools demonstrated that our tool reduce the delay of target response after attacks in application servers by 11%. In addition to reducing response time, WIDIP comparatively reduces the number of control messages on the network when compared to IREMAC.

Bhosale, K. S., Nenova, M., Iliev, G..  2017.  The distributed denial of service attacks (DDoS) prevention mechanisms on application layer. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (℡SIKS). :136–139.

As DDOS attacks interrupt internet services, DDOS tools confirm the effectiveness of the current attack. DDOS attack and countermeasures continue to increase in number and complexity. In this paper, we explore the scope of the DDoS flooding attack problem and attempts to combat it. A contemporary escalation of application layer distributed denial of service attacks on the web services has quickly transferred the focus of the research community from conventional network based denial of service. As a result, new genres of attacks were explored like HTTP GET Flood, HTTP POST Flood, Slowloris, R-U-Dead-Yet (RUDY), DNS etc. Also after a brief introduction to DDOS attacks, we discuss the characteristics of newly proposed application layer distributed denial of service attacks and embellish their impact on modern web services.

Ahmed, M. E., Kim, H., Park, M..  2017.  Mitigating DNS query-based DDoS attacks with machine learning on software-defined networking. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :11–16.

Securing Internet of Things is a challenge because of its multiple points of vulnerability. In particular, Distributed Denial of Service (DDoS) attacks on IoT devices pose a major security challenge to be addressed. In this paper, we propose a DNS query-based DDoS attack mitigation system using Software-Defined Networking (SDN) to block the network traffic for DDoS attacks. With some features provided by SDN, we can analyze traffic patterns and filter suspicious network flows out. To show the feasibility of the proposed system, we particularly implemented a prototype with Dirichlet process mixture model to distinguish benign traffic from malicious traffic and conducted experiments with the dataset collected from real network traces. We demonstrate the effectiveness of the proposed method by both simulations and experiment data obtained from the real network traffic traces.

Diovu, R. C., Agee, J. T..  2017.  A cloud-based openflow firewall for mitigation against DDoS attacks in smart grid AMI networks. 2017 IEEE PES PowerAfrica. :28–33.

Recent architectures for the advanced metering infrastructure (AMI) have incorporated several back-end systems that handle billing and other smart grid control operations. The non-availability of metering data when needed or the untimely delivery of data needed for control operations will undermine the activities of these back-end systems. Unfortunately, there are concerns that cyber attacks such as distributed denial of service (DDoS) will manifest in magnitude and complexity in a smart grid AMI network. Such attacks will range from a delay in the availability of end user's metering data to complete denial in the case of a grounded network. This paper proposes a cloud-based (IaaS) firewall for the mitigation of DDoS attacks in a smart grid AMI network. The proposed firewall has the ability of not only mitigating the effects of DDoS attack but can prevent the attack before they are launched. Our proposed firewall system leverages on cloud computing technology which has an added advantage of reducing the burden of data computations and storage for smart grid AMI back-end systems. The openflow firewall proposed in this study is a better security solution with regards to the traditional on-premises DoS solutions which cannot cope with the wide range of new attacks targeting the smart grid AMI network infrastructure. Simulation results generated from the study show that our model can guarantee the availability of metering/control data and could be used to improve the QoS of the smart grid AMI network under a DDoS attack scenario.

Hyun, D., Kim, J., Hong, D., Jeong, J. P..  2017.  SDN-based network security functions for effective DDoS attack mitigation. 2017 International Conference on Information and Communication Technology Convergence (ICTC). :834–839.

Distributed Denial of Service (DDoS) attack has been bringing serious security concerns on banks, finance incorporation, public institutions, and data centers. Also, the emerging wave of Internet of Things (IoT) raises new concerns on the smart devices. Software Defined Networking (SDN) and Network Functions Virtualization (NFV) have provided a new paradigm for network security. In this paper, we propose a new method to efficiently prevent DDoS attacks, based on a SDN/NFV framework. To resolve the problem that normal packets are blocked due to the inspection on suspicious packets, we developed a threshold-based method that provides a client with an efficient, fast DDoS attack mitigation. In addition, we use open source code to develop the security functions in order to implement our solution for SDN-based network security functions. The source code is based on NETCONF protocol [1] and YANG Data Model [2].

Nikolskaya, K. Y., Ivanov, S. A., Golodov, V. A., Sinkov, A. S..  2017.  Development of a mathematical model of the control beginning of DDoS-attacks and malicious traffic. 2017 International Conference "Quality Management,Transport and Information Security, Information Technologies" (IT QM IS). :84–86.

A technique and algorithms for early detection of the started attack and subsequent blocking of malicious traffic are proposed. The primary separation of mixed traffic into trustworthy and malicious traffic was carried out using cluster analysis. Classification of newly arrived requests was done using different classifiers with the help of received training samples and developed success criteria.

He, Z., Zhang, T., Lee, R. B..  2017.  Machine Learning Based DDoS Attack Detection from Source Side in Cloud. 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud). :114–120.

Denial of service (DOS) attacks are a serious threat to network security. These attacks are often sourced from virtual machines in the cloud, rather than from the attacker's own machine, to achieve anonymity and higher network bandwidth. Past research focused on analyzing traffic on the destination (victim's) side with predefined thresholds. These approaches have significant disadvantages. They are only passive defenses after the attack, they cannot use the outbound statistical features of attacks, and it is hard to trace back to the attacker with these approaches. In this paper, we propose a DOS attack detection system on the source side in the cloud, based on machine learning techniques. This system leverages statistical information from both the cloud server's hypervisor and the virtual machines, to prevent network packages from being sent out to the outside network. We evaluate nine machine learning algorithms and carefully compare their performance. Our experimental results show that more than 99.7% of four kinds of DOS attacks are successfully detected. Our approach does not degrade performance and can be easily extended to broader DOS attacks.

Meng, B., Andi, W., Jian, X., Fucai, Z..  2017.  DDOS Attack Detection System Based on Analysis of Users' Behaviors for Application Layer. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). 1:596–599.

Aiming at the problem of internal attackers of database system, anomaly detection method of user behaviour is used to detect the internal attackers of database system. With using Discrete-time Markov Chains (DTMC), an anomaly detection system of user behavior is proposed, which can detect the internal threats of database system. First, we make an analysis on SQL queries, which are user behavior features. Then, we use DTMC model extract behavior features of a normal user and the detected user and make a comparison between them. If the deviation of features is beyond threshold, the detected user behavior is judged as an anomaly behavior. The experiments are used to test the feasibility of the detction system. The experimental results show that this detction system can detect normal and abnormal user behavior precisely and effectively.

Kansal, V., Dave, M..  2017.  Proactive DDoS attack detection and isolation. 2017 International Conference on Computer, Communications and Electronics (Comptelix). :334–338.

The increased number of cyber attacks makes the availability of services a major security concern. One common type of cyber threat is distributed denial of service (DDoS). A DDoS attack is aimed at disrupting the legitimate users from accessing the services. It is easier for an insider having legitimate access to the system to deceive any security controls resulting in insider attack. This paper proposes an Early Detection and Isolation Policy (EDIP)to mitigate insider-assisted DDoS attacks. EDIP detects insider among all legitimate clients present in the system at proxy level and isolate it from innocent clients by migrating it to attack proxy. Further an effective algorithm for detection and isolation of insider is developed with the aim of maximizing attack isolation while minimizing disruption to benign clients. In addition, concept of load balancing is used to prevent proxies from getting overloaded.

Ferretti, L., Marchetti, M., Colajanni, M..  2017.  Verifiable Delegated Authorization for User-Centric Architectures and an OAuth2 Implementation. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 2:718–723.

Delegated authorization protocols have become wide-spread to implement Web applications and services, where some popular providers managing people identity information and personal data allow their users to delegate third party Web services to access their data. In this paper, we analyze the risks related to untrusted providers not behaving correctly, and we solve this problem by proposing the first verifiable delegated authorization protocol that allows third party services to verify the correctness of users data returned by the provider. The contribution of the paper is twofold: we show how delegated authorization can be cryptographically enforced through authenticated data structures protocols, we extend the standard OAuth2 protocol by supporting efficient and verifiable delegated authorization including database updates and privileges revocation.

Kumar, P. S., Parthiban, L., Jegatheeswari, V..  2017.  Auditing of Data Integrity over Dynamic Data in Cloud. 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM). :43–48.

Cloud computing is a new computing paradigm which encourages remote data storage. This facility shoots up the necessity of secure data auditing mechanism over outsourced data. Several mechanisms are proposed in the literature for supporting dynamic data. However, most of the existing schemes lack the security feature, which can withstand collusion attacks between the cloud server and the abrogated users. This paper presents a technique to overthrow the collusion attacks and the data auditing mechanism is achieved by means of vector commitment and backward unlinkable verifier local revocation group signature. The proposed work supports multiple users to deal with the remote cloud data. The performance of the proposed work is analysed and compared with the existing techniques and the experimental results are observed to be satisfactory in terms of computational and time complexity.

Gurjar, S. P. S., Pasupuleti, S. K..  2016.  A privacy-preserving multi-keyword ranked search scheme over encrypted cloud data using MIR-tree. 2016 International Conference on Computing, Analytics and Security Trends (CAST). :533–538.

With increasing popularity of cloud computing, the data owners are motivated to outsource their sensitive data to cloud servers for flexibility and reduced cost in data management. However, privacy is a big concern for outsourcing data to the cloud. The data owners typically encrypt documents before outsourcing for privacy-preserving. As the volume of data is increasing at a dramatic rate, it is essential to develop an efficient and reliable ciphertext search techniques, so that data owners can easily access and update cloud data. In this paper, we propose a privacy preserving multi-keyword ranked search scheme over encrypted data in cloud along with data integrity using a new authenticated data structure MIR-tree. The MIR-tree based index with including the combination of widely used vector space model and TF×IDF model in the index construction and query generation. We use inverted file index for storing word-digest, which provides efficient and fast relevance between the query and cloud data. Design an authentication set(AS) for authenticating the queries, for verifying top-k search results. Because of tree based index, our scheme achieves optimal search efficiency and reduces communication overhead for verifying the search results. The analysis shows security and efficiency of our scheme.

Ghutugade, K. B., Patil, G. A..  2016.  Privacy preserving auditing for shared data in cloud. 2016 International Conference on Computing, Analytics and Security Trends (CAST). :300–305.

Cloud computing, often referred to as simply “the cloud,” is the delivery of on-demand computing resources; everything from applications to data centers over the Internet. Cloud is used not only for storing data, but also the stored data can be shared by multiple users. Due to this, the integrity of cloud data is subject to doubt. Every time it is not possible for user to download all data and verify integrity, so proposed system contain Third Party Auditor (TPA) to verify the integrity of shared data. During auditing, the shared data is kept private from public verifiers, who are able to verify shared data integrity without downloading or retrieving the entire data file. Group signature is used to preserve identity privacy of group members from third party auditor. Privacy preserving is done to ensure that the TPA cannot derive user's data content from the information collected during the auditing process.

2018-01-10
Aissaoui, K., idar, H. Ait, Belhadaoui, H., Rifi, M..  2017.  Survey on data remanence in Cloud Computing environment. 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). :1–4.

The Cloud Computing is a developing IT concept that faces some issues, which are slowing down its evolution and adoption by users across the world. The lack of security has been the main concern. Organizations and entities need to ensure, inter alia, the integrity and confidentiality of their outsourced sensible data within a cloud provider server. Solutions have been examined in order to strengthen security models (strong authentication, encryption and fragmentation before storing, access control policies...). More particularly, data remanence is undoubtedly a major threat. How could we be sure that data are, when is requested, truly and appropriately deleted from remote servers? In this paper, we aim to produce a survey about this interesting subject and to address the problem of residual data in a cloud-computing environment, which is characterized by the use of virtual machines instantiated in remote servers owned by a third party.

Wrona, K., Amanowicz, M., Szwaczyk, S., Gierłowski, K..  2017.  SDN testbed for validation of cross-layer data-centric security policies. 2017 International Conference on Military Communications and Information Systems (ICMCIS). :1–6.

Software-defined networks offer a promising framework for the implementation of cross-layer data-centric security policies in military systems. An important aspect of the design process for such advanced security solutions is the thorough experimental assessment and validation of proposed technical concepts prior to their deployment in operational military systems. In this paper, we describe an OpenFlow-based testbed, which was developed with a specific focus on validation of SDN security mechanisms - including both the mechanisms for protecting the software-defined network layer and the cross-layer enforcement of higher level policies, such as data-centric security policies. We also present initial experimentation results obtained using the testbed, which confirm its ability to validate simulation and analytic predictions. Our objective is to provide a sufficiently detailed description of the configuration used in our testbed so that it can be easily re-plicated and re-used by other security researchers in their experiments.

Stoughton, A., Varia, M..  2017.  Mechanizing the Proof of Adaptive, Information-Theoretic Security of Cryptographic Protocols in the Random Oracle Model. 2017 IEEE 30th Computer Security Foundations Symposium (CSF). :83–99.

We report on our research on proving the security of multi-party cryptographic protocols using the EASYCRYPT proof assistant. We work in the computational model using the sequence of games approach, and define honest-butcurious (semi-honest) security using a variation of the real/ideal paradigm in which, for each protocol party, an adversary chooses protocol inputs in an attempt to distinguish the party's real and ideal games. Our proofs are information-theoretic, instead of being based on complexity theory and computational assumptions. We employ oracles (e.g., random oracles for hashing) whose encapsulated states depend on dynamically-made, nonprogrammable random choices. By limiting an adversary's oracle use, one may obtain concrete upper bounds on the distances between a party's real and ideal games that are expressed in terms of game parameters. Furthermore, our proofs work for adaptive adversaries, ones that, when choosing the value of a protocol input, may condition this choice on their current protocol view and oracle knowledge. We provide an analysis in EASYCRYPT of a three party private count retrieval protocol. We emphasize the lessons learned from completing this proof.

2017-12-28
Chen, L., Dai, W., Qiu, M., Jiang, N..  2017.  A Design for Scalable and Secure Key-Value Stores. 2017 IEEE International Conference on Smart Cloud (SmartCloud). :216–221.

Reliable and scalable storage systems are key to cloud-based applications. In cloud storage, users store their data on remote servers rather than their local computers. Secure storage is used to ensure the safety of data in clouds. As more and more users rely on third-party cloud vendors to store their data, concerns have arisen among users and cloud providers. Encryption-based approaches are commonly used in secure storage systems. Data are encrypted and stored on persistent storage like disks and flash memories. When data are needed by the users, they are decrypted and accessed by the users. This way of managing data hurts the scalability and throughput of cloud systems. In the meantime, cloud systems have to perform fault-tolerance strategies on data, which also brings performance deduction. The combination of these issues cause a high price for data security in cloud systems. Aware of such issues. we propose methods to reduce the overhead of secure storage while guaranteeing the safeness of data.

Liang, X., Zhao, J., Shetty, S., Li, D..  2017.  Towards data assurance and resilience in IoT using blockchain. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :261–266.

Data assurance and resilience are crucial security issues in cloud-based IoT applications. With the widespread adoption of drones in IoT scenarios such as warfare, agriculture and delivery, effective solutions to protect data integrity and communications between drones and the control system have been in urgent demand to prevent potential vulnerabilities that may cause heavy losses. To secure drone communication during data collection and transmission, as well as preserve the integrity of collected data, we propose a distributed solution by utilizing blockchain technology along with the traditional cloud server. Instead of registering the drone itself to the blockchain, we anchor the hashed data records collected from drones to the blockchain network and generate a blockchain receipt for each data record stored in the cloud, reducing the burden of moving drones with the limit of battery and process capability while gaining enhanced security guarantee of the data. This paper presents the idea of securing drone data collection and communication in combination with a public blockchain for provisioning data integrity and cloud auditing. The evaluation shows that our system is a reliable and distributed system for drone data assurance and resilience with acceptable overhead and scalability for a large number of drones.

Kabiri, M. N., Wannous, M..  2017.  An Experimental Evaluation of a Cloud-Based Virtual Computer Laboratory Using Openstack. 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI). :667–672.

In previous work, we proposed a solution to facilitate access to computer science related courses and learning materials using cloud computing and mobile technologies. The solution was positively evaluated by the participants, but most of them indicated that it lacks support for laboratory activities. As it is well known that many of computer science subjects (e.g. Computer Networks, Information Security, Systems Administration, etc.) require a suitable and flexible environment where students can access a set of computers and network devices to successfully complete their hands-on activities. To achieve this criteria, we created a cloud-based virtual laboratory based on OpenStack cloud platform to facilitate access to virtual machine both locally and remotely. Cloud-based virtual labs bring a lot of advantages, such as increased manageability, scalability, high availability and flexibility, to name a few. This arrangement has been tested in a case-study exercise with a group of students as part of Computer Networks and System Administration courses at Kabul Polytechnic University in Afghanistan. To measure success, we introduced a level test to be completed by participants prior and after the experiment. As a result, the learners achieved an average of 17.1 % higher scores in the post level test after completing the practical exercises. Lastly, we distributed a questionnaire after the experiment and students provided positive feedback on the effectiveness and usefulness of the proposed solution.

Chowdhary, A., Dixit, V. H., Tiwari, N., Kyung, S., Huang, D., Ahn, G. J..  2017.  Science DMZ: SDN based secured cloud testbed. 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :1–2.

Software Defined Networking (SDN) presents a unique opportunity to manage and orchestrate cloud networks. The educational institutions, like many other industries face a lot of security threats. We have established an SDN enabled Demilitarized Zone (DMZ) — Science DMZ to serve as testbed for securing ASU Internet2 environment. Science DMZ allows researchers to conduct in-depth analysis of security attacks and take necessary countermeasures using SDN based command and control (C&C) center. Demo URL: https : //www.youtube.corn/watchlv = 8yo2lTNV 3r4.

Luo, S., Wang, Y., Huang, W., Yu, H..  2016.  Backup and Disaster Recovery System for HDFS. 2016 International Conference on Information Science and Security (ICISS). :1–4.

HDFS has been widely used for storing massive scale data which is vulnerable to site disaster. The file system backup is an important strategy for data retention. In this paper, we present an efficient, easy- to-use Backup and Disaster Recovery System for HDFS. The system includes a client based on HDFS with additional feature of remote backup, and a remote server with a HDFS cluster to keep the backup data. It supports full backup and regularly incremental backup to the server with very low cost and high throughout. In our experiment, the average speed of backup and recovery is up to 95 MB/s, approaching the theoretical maximum speed of gigabit Ethernet.

Nguyen, Q. L., Sood, A..  2017.  Scalability of Cloud Based SCIT-MTD. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :581–582.

In order to support large volume of transactions and number of users, as estimated by the load demand modeling, a system needs to scale in order to continue to satisfy required quality attributes. In particular, for systems exposed to the Internet, scaling up may increase the attack surface susceptible to malicious intrusions. The new proactive approach based on the concept of Moving Target Defense (MTD) should be considered as a complement to current cybersecurity protection. In this paper, we analyze the scalability of the Self Cleansing Intrusion Tolerance (SCIT) MTD approach using Cloud infrastructure services. By applying the model of MTD with continuous rotation and diversity to a multi-node or multi-instance system, we argue that the effectiveness of the approach is dependent on the share-nothing architecture pattern of the large system. Furthermore, adding more resources to the MTD mechanism can compensate to achieve the desired level of secure availability.

2017-12-20
Schäfer, C..  2017.  Detection of compromised email accounts used for spamming in correlation with origin-destination delivery notification extracted from metadata. 2017 5th International Symposium on Digital Forensic and Security (ISDFS). :1–6.

Fifty-four percent of the global email traffic in October 2016 was spam and phishing messages. Those emails were commonly sent from compromised email accounts. Previous research has primarily focused on detecting incoming junk mail but not locally generated spam messages. State-of-the-art spam detection methods generally require the content of the email to be able to classify it as either spam or a regular message. This content is not available within encrypted messages or is prohibited due to data privacy. The object of the research presented is to detect an anomaly with the Origin-Destination Delivery Notification method, which is based on the geographical origin and destination as well as the Delivery Status Notification of the remote SMTP server without the knowledge of the email content. The proposed method detects an abused account after a few transferred emails; it is very flexible and can be adjusted for every environment and requirement.